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This is the final report of accomplishments in the time period from April 1, 1990 to 

March 31, 1994 under the NASA Grant No. NAGW-2048. 

- ABSTRACT 

The research carried out on this three-year grant was on the space-time evolution 

of electron cyclotron maser-like electromagnetic instabilities. Specifically, the work was 

aimed at understanding the conditions for the emission of radiation at the fundamental of 

and the harmonics of the electron cyclotron frequency. This was done with the purpose 

of explaining the observed features of auroral kilometric radiation (AKR). Our research 

also included work on the nonlinear evolution of the three wave interaction. The three 

wave interactions are ubiquitous to a variety of plasmas, including those in the solar loops, 

and may explain the saturation of some types of AKR. The last part of our research was 

on nonlinear wave-particle interactions. Within the auroral regions, acceleration of ions 

by electrostatic waves has been observed. The work carried out was on basic aspects of 

nonlinear wave-particle interactions when the wave frequency is an integer multiple of the 

ion-cyclotron frequency. 

INTRODUCTION 

Our work was motivated by the need to understand the detailed properties of radi- 

ation emitted by loss-cone type of electron distribution functions. This was done for the 

purposes of comparing proposed theoretical models with observed characteristics of au- 

roral kilometric radiation (AKR). It has lbeen established that relativistic electrons with 

a loss-cone distribution in the auroral region is the source of AKR [C. S. Wu and L. C. 

Lee, Astrophys. J., 230, 621 (1979)l. The instability giving rise to AKR is known as the 

cyclotron-maser instability (CMI) and has been extensively studied since it was initially 

proposed [see C. S. Wu, Space Sci. Revs., 41,215 (1985), and references therein]. However, 

in order to make detailed comparisons between the properties of CMI and the observations, 

it was necessary to study the space-time evolution of CMI. This was the principal focus of 

our grant. 

In addition, we initiated two studies on nonlinear interactions relevant to space plasma 
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physics in a broader context: the space-time evolution of nonconservative three-wave in- 

teractions (3WI) in which one wave is unstable and the other two are damped; and the 

acceleration of ions by chaotic dynamics induced by lower-hybrid waves which are typically 

at high multiples of the ion-cyclotron frequency. 

In the following, we summarize our accomplishments in these three studies, and ap- 

pend copies of our relevant publications. 

ACCOMPLISHMENTS 

In this NASA grant-supported research, we established the distinguishing features be- 

tween absolute and convective instabilities generated by anisotropic electron distribution 

functions in an ambient magnetic field. We then studied the properties of such instabil- 

ities when propagating across the magnetic field. This was done in order to understand 

the harmonic emission of AKR which was &st pointed out by Benson [R. F. Benson, J .  

Geophys. Res., 90, 2753 (1985)I and later by others from different observations. 

The use of the Green’s function analysis [see A. Bers, in Handbook of Plasma Physics, 

Vol. 1, Chapter 3.2, eds. M. W. Rosenbluth and R. 2. Sagdeev (North-Holland, 1983), and 

references therein] to determine the distinguishing properties of absolute and convective 

instabilities was presented in an invited talk at the 1990 Cambridge Workshop in Geo- 

plasma Physics and published in the proceedings of this conference [A. K. Ram and A. 

Bers, in Physics of Space Plasmas (1990), Proceedings of the 1990 Cambridge Workshop 

in Geoplasma Physics, SPI Conference Proceedings and Reprint Series, Number 10, eds. 

T. Chang, G. B. Crew, and J. R. Jasperse (Cambridge, MA: Scientific Publ. Inc., 1991), 

pp. 351-3651, attached in Appendix A. This work pointed out for the first time that bursts 

of radiation with narrow bandwidth in frequency could be associated with an absolute 

instability and did not require any feedback mechanisms as had been proposed earlier [W. 

Calvert, J.  Gwphys. Res., 87, 8199 (1982)l. 

At the 1990 American Geophysical Union meeting in San Francisco (December 3- 

7, 1990) we presented in an oral session the application of the pinch-point technique to 

electromagnetic instabilities of the type generated in the auroral regions [Appendix B]. 

For the first time, we presented the spectral differences between absolute and convective 
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instabilities. These spectral differences are important in correlating theoretical models 

with observations. 

A paper detailing the Green’s function and pinch point technique, its domain of va- 

lidity, and its important features was published in Geophysical Research Letters [Appendix 

C] . This paper cleared previous misconceptions on absolute and convective instabilities and 

the use of the pinch point technique to determine the nature of instabilities in a linearly 

unstable medium. 

At the 1991 American Geophysical TJnion meeting in San Francisco (December 9- 

13, 1991), we presented, in an oral session, the application of the pinch point technique 

to determine the nature of the electromagnetic instabilities of the type generated in the 

auroral regions [Appendix D] . We considered those instabilities that propagate across the 

ambient magnetic field and studied in detail the emission at the fundamental of and the 

second harmonic of the electron cyclotron frequency ( a c e ) .  Our objective was to determine, 

within the realm of linear instability theory, the size of the source region required for 

AKR to achieve substantial amplitudes, and the conditions for the generation of harmonic 

AKR. One of the interesting features of thle pinch point, Green’s function analysis, is that 

it determines the pulse-front velocity of the unstable wavepackets in the medium. Our 

previous studies [G. Francis, A. I C  Ram, and A. Bers, Phys. Fluids, 29, 255 (1986)l have 

demonstrated that this pulse-front ve1ocit:y of propagation is not intuitively obvious for a 

given dispersion relation of unstable waves. For the electron cyclotron maser instabilities, 

we find that for low densities ( a p e / W c e  ,< where a p e  is the electron plasma frequency), 

the emission at wce is an absolute instability whose pulse-front velocity is nearly the speed of 

light. As the density is increased this velocity decreases. n o m  these pulse-front velocities, 

we can determine the scale lengths of the density inhomogeneities required for the linearly 

growing wavepacket to reach a given amplitude. For instance, when v c e  = ~ 4 2 7 ~  = 

500 kHz in order to have a linear growth to 4 efoldings, the scale length required at 

W p e / W c e  = 0.01 is about 123 km while for Wpe/Wce  = 0.142 the scale length is about 4 km. 

(The other parameters needed to get these numbers are indicated in Appendix D.) For 

W p e / W c e  > 0.144 the instability at w c e  with phase velocities greater than the speed of light 

( c )  are stabilized. For mpe/Wce  ,< 0.144 the instability at w c e  is an absolute instability with 
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phase velocities greater than c ,  and thus not subject to Landau damping. The instability 

at h,, is convective for phase velocities greater than c and absolute for phase velocities 

less than c. The scale length for this emission to grow to 4 e-foldings for upe/uce = 0.01 

is about 42 m. However, this instability citn be stabilized by thermal effects for slightly 

oblique propagation across the magnetic field. This limits the instability to propagate 

almost directly across the magnetic field. This may explain why emission at harmonics is 

not observed all the time and also why this emission is not observed very far away from 

the source region. 

- 

On a more general and basic physics level, we also studied the nonlinear space-time 

evolution of the three-wave interaction (3WI) with an unstable growing pump coupled to 

two damped daughter waves. This could be one of the saturation mechanisms for the cy- 

clotron maser instabilities discussed above. The three-wave interaction is a generic plasma 

phenomenon which has been encountered in a variety of plasmas. The time evolution of the 

spatially uniform 3WI has been used to explain the observational features of the solar flare 

plasma [L. Vlahos, R. R. Sharma, and I<. Papadopoulos, Astrophys. J., 275, 374 (1983)l. 

The time evolution model has been extensively studied and found to exhibit chaotic be- 

havior when there is dephasing in the 3WI [J. M. Wersinger, J. M. Finn, and E. Ott, Phys. 

Fluids, 23, 1142 (1980)l. Since instabilities, even in the linear case, propagate in space and 

time, the spatio-temporal behavior of the 3WI needed to be studied. While the conserva- 

tive 3WI (where the pump does not grow and the daughter waves do not damp) has been 

studied extensively, both numerically and analytically [D. J. Kaup, A. H. Reiman, and A. 

Bers, Rev. Mod. Phys., 51, 915 (1979)], ours has been the first effort at understanding 

the non-conservative 3WI. One of the interesting features that came out of these studies 

is the observation of spatio-temporal cham: the chaotic interaction of spatially localized 

structures. This did not require that the 3WI be dephased. The localized structures would 

manifest themselves as bursts when observed by satellites travelling through the unstable 

medium. An overview of the spatio-temporal evolution of the 3WI was presented at an 

invited talk of the 1991 Cambridge Workshop in Theoretical Geoplasma Physics (June 

24-28, 1991) and published in the proceedings [Appendix E], and, as an invited talk, at 

the 1992 International Conference on Plasma Physics, Innsbruck, Austria. The latter was 
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then published as a paper in a journal [Appendix F]. 

The final part of our research was to study the nonlinear wave-particle interaction for 

the purposes of understanding the transverse acceleration of ions by electrostatic waves in 

the auroral zones. The basic aspects of the nonlinear interaction and the interesting aspects 

of the interaction when the wave frequency is an integer multiple of the ion-cyclotron 

frequency were presented in an invited talk at the 1993 M.I.T. Symposium on the Physics 

of Space Plasmas: “Chaos, Stochasticity, and Strong Turbulence,” and published in the 

proceedings [A. K. Ram and A. Bers, in Phhysics of Space Plasmas (19931, Proceedings of 

the 1993 Cambridge Workshop in Geoplasma Physics and the 1993 M.I.T. Symposium on 

the Physics of Space Plasmas: “Chaos, Stochasticity, and Strong Turbulence,” Number 

13, eds. T. Chang and J. R. Jasperse (Cambridge, MA: M.I.T. Center for Theoretical 

Geo/Cosmo Plasma Physics, 1995), pp. 341-3771. This paper is attached in Appendix G. 
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ABSTRACT 

A brief description of the pinch-point analysis of the Green's function 
for studying the space-time evolution of instabilities in a homogeneous 
medium is presented. This analysis determines if an instability propagates 
in space-time as an absolute instability or as a convective instability. The 
pinch-point technique is applied to the study of electron cyclotron maser 
type of instabilities. Such instabilities are believed to be a source of some 
types of observed planetary, solar and stellar emissions, and, in particular, 
of auroral kilometric radiation. The pinch-point analysis also brings out 
the spectral differences between absolute and convective instabilities that 
should be important in correlating theoretical models with observations. 

I. INTKODUCTION 

Laboratory, Space, and Astrophysical plasmas are rich sources of elec- 
tromagnetic radiation whose intensities are above the thermal levels of 
emission. There are two generic ways of generating this radiation. The 
first is due to some internal sources of free energy which excite, from noise, 
an instability inside the plasma. 'This occurs, for instance, due to spatial 
gradients or anisotropies inherent in the plasma. The second way that the 
plasma acts as a source of electromagnetic radiation is by stimulated scat- 
tering of some of the externally incident electromagnetic waves. This may 
happen when the incident waves couple nonlinearly to some normal modes 
of the plasma and unstably drive, from noise, the scattered radiation from 
inside the plasma. In either case, the instability evolves in the free energy 
source region leading, eventually, to electromagnetic radiation propagating 
out of the plasma. 

An aspect of the radiation that is observed and measured by a de- 
tector or a probe, located in the source region or far away from it, is the 
intensity of the emission as a fundion of either the frequency or the wave- 
length of the emission. In order to understand the emission, one would 
like to know about the onset of the instability that leads to the observed 
emission, the propagation in space and time of the instability through the 
source region and beyond, and, finally, the evolution towards the saturated 
nonlinear state which is eventually observed. In this paper we are going to 
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discuss features of the linear evolution and propagation of instabilities in 
a homogeneous medium that would have distinguishable signatures in the 
observed spectra. 

The linear evolution and propagation of instabilities in a homogeneous 
medium has been discussed before [l] . The essence of the Green's function 
technique used in these studies is presented in section II. In section 111 
this technique is applied to the propagation of cyclotron maser type of 
instabilities. Such instabilities are considered to be a source of auroral 
kilometric radiation [2, 31. The characteristic features associated with the 
propagation of such instabilities through space and time are also discussed 
in section 111. 

11. GREEN'S FUNCTION ANALYSIS OF INSTABILITIES 

The propagation of a small amplitude signal in a homogeneous medium 
is described by an equation of the form: 

where I: is a linear operator, 4 is a vector function describing the small 
amplitude signal, -. describes the medium through which the signal is 
propagating, and Scot is either a noise source or an external source acting 
on the medium. The spacc-time Fourier transform of the above equation 
yields: 

- - 
D(&w) &&w) = s,,*(&w) 

where 5 is a s u m  of the Fourier transform of the left-hand side of Q. (1) 
and the Fourier transform of a. If, for some real-& the corresponding w's 

satisfying det { E ( & w ) }  = D(&w) = 0 (where det denotes the determi- 
nant) are such that the imaginary part of w is > 0, then the medium is 
considered to be unstable to a perturbation with that particular z and w. 
Eq. (2) can be solved for $(z,w),  80 that the solution to Eq. (1) is given 
by: 

- 

- - 
where Da4 is the adjoint matrix of D, and L and F are the appropriate 
Laplace and Fourier contours of integration, respectively, which are chosen 
to satisfy causality [I]. 
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While Eq. (3) givts the general space-time propagation of a signal in a 
medium driven by Scst, we are usually interested in the natural response of 
the medium. The Green's function technique gives a physical and general 
insight into the response properties of the medium [4]. The Green's function 
solution, G(F, t), is obtained by rcqhcing in Eq. (1) by a(fla(t)?, where 
I is the identity tensor. The Green's function approach is equivalent to 
evaluating the response of the m.edium to a localized, broadband, "white" 
noise source. The response to a general perturbation is then obtained by 
convolving the Green's function with the perturbation [4]. 

In what follows, we shall consider scalar fields, $, and only one spatial 
dimension. For this case the Green's function is given by: 

4 

- - 

where k is the wave-number in the z direction. The generalization to vector 
fields and higher spatial dimensions is more complicated but can be carried 
out in a straightforward manner. 

Even for simple dispersion functions, D ( k ,  w) ,  it is frequently difficult 
to compute the Green's function analytically. However, we are not generally 
interested in the transient solution to G(z,t). Rather, we would like to 
know the timoasymptotic behavior of G(z,t). It has been determined 
that, in an unstable medium, the timoasymptotic evolution of G(z,t)  can 
belong to one of only two possible categories [5, 61: 
(a)  an abaolute instability, where the response grows in time and encom- 

passes more and more of the space as a function of time - the response 
always including the spatial location of the initial perturbation; thus, 
every spatial point eventually becoming unstable; 

( b )  a convective instability, whem the response grows in time but propa- 
gates away from its point of origin; thus, any spatial point eventually 
becoming stable. 

While the above classification of the time-asymptotic Green's function into 
two categories for 811 unstable medium is useful, it still leavcs us with the 
daunting task of solving for G(z,t) in the timoasymptotic limit. This task 
was considerably simplified by the "pinch-point" formalism that was orig- 
inally put forth by Bers and Briggs [6, 71. This formalism presented a 
convenient way to determine whether an unstable medium was absolutely 
unstable or convectively unstable, and, furthermore, completely determined 
the time-asymptotic Green's function. According to the pinch-point pro- 
cedure, the time-asymptotic Green's function is completely determined by 
those ko, wo which satisfy: 
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and are "pinch points". A pinch point is determined by the analytic con- 
tinuation, in the complex w-plane, of the Laplace contour, L, towards the 
real w-axis [l, 71. As L is lowered towards the real w-axis the corresponding 
Fourier contour, F, is subsequently modified to satisfy causality. This is 
ensured by requiring that F does not intersect any branches obtained by 
the mapping of the Lcontour into the complex &-plane through the disper- 
sion relation: D(k,w) = 0. This condition is violated when two branches 
of the Lcontour in the complex k-plane coming from opposite sides of the 
real IC-axis meet and "pinch" the Fourier contour. This d&es the pinch 
point in the complex k-plane and it requires that the Laplace contour be 
deformed past the corresponding (branch) point in the complex w-plane 
(satisfying D ( k , o )  = 0). If a pinch point exists, and the corresponding 
point in w is in the upper half plane at w = wo, then the medium is ab- 
solutely unstable with the time-asymptotic form of the Green's function 
given by: 

Otherwise, the medium is convectively unstable. 
The time-asymptotic form of G(z,t) at the origin of the laboratory 

coordinate system ( z  = 0) is given by l3q. (6). The spatial form of G(z,t) 
is obtained by doing the pinch-point analysis in all possible inertial frames 
which are moving with respect to the laboratory frame [6,8]. In an inertial 
frame moving with velocity u with respect to the laboratory frame, the 
Green's function is given by: 

(7) dk' 1 ucp(ik'z' - iw't') 

where the primed quantities are evaluated in the moving frame. Dv is given 
by: 

Dv (k', w', u )  = D [IC(&',  w', u), w(k', w', u)] 

and the relation between the primed and the unprimed quantities is given 
by the Lorentz transformations: 

U 
z = yv (2' +ut') , t = 7- (t + -p') , 

U 
k = yv (k' + s w ' )  , w = 7- (w' + uk') (9) 

where yo = (1 - u 2 2  /c )-'I2. 
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Then, as in Eq. (6), the thio-asymptotic response of G(z',t') at the 
origin of the primed coordinate system is: 

where the pinch point hquency in the primed coordinate system, wi(u) ,  is 
a function of the observer velocity. By using the transformation equations 
given in Eq. (9) it is easy to show that: 

Besides determining the spatial and temporal evolution of G(z,t) in 
the time-asymptotic limit for ant absolute instability, it is dear that this 
procedure also determines the spatial and temporal evolution of a convec- 
tive instability. 

Thus, from the pinch-point cmalysis the following properties of an un- 
stable medium can be determined 
(a) the absolute versus convective nature of the unstable medium; 
(b) the space-time evolution (i.e. the spatial and temporal growth rates) 

of a localized (at z = 0) ncdse source from an initial time to a time 
where the transient response of the system to the initial perturbations 
can be ignored; 

(c) the velocity of propagation of the instability in the medium. 
This last point is very important. In general, the velocity of propagation 
is not related to a group velocity of any mode satisfying the dispersion 
relation D(lc,w) = 0. In particular, for an absolutely unstable medium 
the concept of a group velocity cannot be defined. Thus, ray-tracing in an 
absolutely unstable medium is nieaningless. 

It is important to note that the Green's function describes the natural 
responses of an infinitely extended medium. In contrast to responses in 
a bounded medium, this must entail that there be no (initial) excitations 
at infin;ty or, that, at infinity, the initial excitations decay faster than the 
space-time normal modes. If, at infinity, the initial conditions do not decay 
faster than the the space-time normal modes, it is meaningless to describe 
or distinguish the space-time evolution of these initial conditions in terms 
of the inherent properties of absolute and convective instabilities in that 
medium. By not paying attention to these mathematical details one can 
make misguided and misleading statements about the theory of absolute 
and convective instabilities [9]. 
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111. SPACETIME EVOLUTION OF 
CYCLOTRON MASER TYPE OF INSTABILITIES 

The cyclotron maser instability driven by a loss-cone distribution is 
believed to be a favorable explanation for the auroral kilometric radiation 
[2, 31, the Jovian decametric emission and similar emissions from Saturn 
and Uranus, certain types of continuum solar microwave bursts, and mi- 
crowave emission from some h e  stars [lo]. In this &ion we consider 
a highly anisotropic, ring-like, electron distribution function in a uniform, 
background magnetic field and study the space-time evolution of instabili- 
ties propagating along the magnetic field [ll-131. ELrthermore, we wil l  use 
the pinch-point analysis to determine important characteristics that wi l l  
help distinguish absolute instabilities from convective instabilities. 

The electron distribution function is assumed to be of the form: 

in a homogeneous magnetic field, Bo. Here pL and pI are the magnitude 
of the perpendicular (to Bo) and parallel components of the momentum, 
respectively, and & is a constant momentum. Assuming the ions to be 
forming a cold, neutralizing background, the relativistic Vlasov equation 
leads to the following dispersion relation for right-handed circularly polar- 
ized electromagnetic waves propagating along go: 

D(k ,w)  = (c2k2 - w') { (W - h, - we)2 + 5 .2} 
2 c 2  p (13) - .  + w; (w - hI) (w - hr - w e )  

where 

me is the electron rest mass, and up. and ma are the electron plasma 
and electron cyclotron frequencies, respectively, corresponding to the rest 
mass of the electrons. For uw/uc,, = 0.2, uI = 0 and uL = O.%, the 
roots of the dispersion relation (real and imsginary parts of W )  are plotted 
in Fig. 1 as a function of real k. There are three branches of D(k,w) 
corresponding to the whistler mode (whose phase velocity is less than the 
speed of light), an electromagnetic mode (whose phase velocity is greater 
than the speed of light) and a negative energy mode. The coupling of the 
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negative energy mode to the whistler mode or the electromagnetic mode 
leads to the whistler instability or the relativistic instability, respectively. 

I 8 

-I 0 I 

- ck 
U c o  

Qo3 

a 
a02 0 3 

Y 3 
\ 

3 - 
0.01 

0 

Figure 1. Real (solid line) and imaginary (dashed line) parts of 
the normalized frequency 'versus real, normalized wavenumbers. 
These are the roots of the dispersion function given in Eq. (13) 
for wp,/w,, = 0.2, uI = 0, and ul = 0 . 2 ~ .  W is the whistler 
branch, EM is the electromagnetic branch, - indicates the neg- 
ative energy branch, 1 corresponds to the whistler instability and 
2 to the relativistic instability. 

For the parameters indicated above the pinch-point analysis in the 
laboratory kame shows that there arc three pin& points with two of them 
corresponding to the whistler instability and one to the relativistic insta- 
bility. The pinch points of the: whistler instabity arc at ko = f o o  and 
w,/w,, 0.98 + O.O28i, while the pinch point of the relativistic instability 
is at I C ,  = 0 and o0/wa k~ 0.999 + 0.02i. Thus, the whistler and the rel- 
ativistic instabilities arc absolute instabilities with the whistler instability 
having a higher growth rate. The timeasymptotic form of the Green's 
function is determined by doing the pinch point analysis in all the iner- 
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tial frames moving with different velocities with respect to the laboratory 
frame. F'rom Eq. (11): 

where oli is the imaginary part of w:. Here we have neglected the h(t) 
term for large t .  In Fig. 2 we have plotted the "pulse shape", i.e. ~k(u)/7,, 
as function of the observer velocity u. Since, in Fig. 2, the product of the 
abscissa with t gives E ,  and the product of the ordinate with t gives the 
right-hand side of Eq. (14), Fig. 2 gives the time-asymptotic, self-similar 
evolution of the magnitude of the logarithm of the Grcen'e function. 

Figure 2. The appropriately normalized pulse shapes for the 
whistler (1,3) and the relativistic (2) instabilities. The parame- 
ters are the same as for Fig. 1. The dashed line indicates that 
the pinch point corresponding to 3 has been dissolved by 2. The 
pulse shapes for 1 and 2 are those of an absolute instability. 

The two pinch points for the whistler waves (labeled 1 and 3 in Fig. 
2), which have the same frequency at u = 0 (i.e. in the laboratory frame), 
become degenerate for u # 0. However, when Iul k: 0.005, the whistler 
pinch point (3) interacts with the relativistic pinch point (labeled 2). Here, 
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the whistler pinch point (3) is "dissolved" [l] by the relativistic pinch point 
(2). Thereafter, for Iul,> 0.005, only the pinch points corresponding to the 
whistler instability (1) and the relativistic instability survive. In the rest 
of the discussion we shall consider only these two pinch points. Fkom Fig. 
2 the absolute nature of the two instabilities is quite clear. 

The whistler instability, while it has a larger growth rate than the the 
relativistic instability, can be titab- by thermal spreading of the ring 
distribution [12, 131. The relativistic instability is not affected by thermal 
effects as its phase velocity is greater than the speed of light. So, instead of 
studying just the whistler instatbility, we shall also determine the behavior 
of the the relativistic instability. 

In Eq. (ll), the dominant variation of the Green's function in space 
and time is given by the exponential. The factor multiplying the acponen- 
tial varies slowly with space and time. By neglecting this factor, the real 
part of the time-asymptotic Green's function is given by: 

where, now, 7,, = [l - ( ~ / d ) ' ] - " ~ ,  and w; is the real part of wi. For an 
observer at a fked point E = z,, with I E , ~  > 0, I'(z,,t) gives the temporal 
history of an instability which has evolved from a broadband noise source 
located at E = 0 at time t = 0. 

By the very nature of an absolute instability, I'(z,,t) will continue to 
grow in time for all times. In Figs. 3a and 3b we have plotted the frequency 
spectrum of I'(z,,t), i.e. II'(z,,w)l, for the whistler and relativistic insta- 
bilities, respectively. The power spectrum is very narruw-band for both 
instabilities and the peak of tht: spectrum occurs near the laboratory pinch 
point frequency, w b ( u  = 0). Tlius, to an observer in the unstable medium, 
the two absolute instabilities would correspond to very narrow fkquency 
spectra. 

As uOu is increased, the maximum of the pulse shape occurs at an ob- 
server velocity u = uol. For the same parameters as indicated above, the 
two instabilities become convective when uoi ,> 0.18~. In order to illustrate 
the effect of relativity, and the characteristics of convective instabilities, 
we consider the case where uol = 0.85~. The corresponding pulse shape 
is plotted in Fig. 4. Again, there arc two pinch points corresponding to 
the whistler instability (labeled 1 and 3) and one pinch point for the rele 
tivistic instability (labeled 3). Pinch point 3 is dissolved by the relativistic 
instability and we arc I& wit'h two pinch points (1 and 2). The pulse 
shape is highly asymmetric as compared to the pulse shape in Fig. 2. This 
asymmetry is due to the relativistic dects. It is clearly evident that the 
two instabilities are convective. 
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Figure 3a. The frequency spectrum of I'(zo,t), with z ~ w ~ ~ / c  = 
50, for the whistler instability (labeled 1 in Fig. 2). 

Figure 3b. The frequency spectrum of I'(zo,t), with zowco/c = 
50, for the relativistic instability (labeled 2 in Fig. 2). 
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Figure 4. The appropriately normalized pulse shapes for the 
whistler (1,3) and the relativistic (2) instabilities. The param- 
eters are the same as for Fig. 1 except that uw = 0.85~. Again, 
the pinch point correspondjing to 3 has been dissolved by 2. The 
pulse shapes for 1 and 2 are those of a convective instability. 

In order to calculate I'(z,, t), the convective nature of the instabilities 
requires that the observer be at; z = z, > 0. Mhermore, in contrast to 
an absolute instability where an observer sees a continuous growth of the 
signal, for the convective instability an observer will observe the instability 
for a finite amount of time. This is the case as shown in Figs. 5a and 5b for 
the whistler and the relativistic instabilities, respectively. The wave packet 
nature of the convective instability is obvious from these figures. 

The power spectrum of the signal in Figs. 5a and 5b is plotted in Figs. 
6a and 6b, respectively. The relative broadband nature of the spectrum, as 
compared to the case when the whistler and relativistic instabilities were 
absolute, is dearly evident. The power is spread out to harmonics of the 
electron cyclotron frequency. 

Thus, there is a distinct observational difference between absolute and 
convective instabilities. The emission corresponding to an absolute insta- 
bility will have a narrow frequency spectrum while a convective instability 
will correspond to a broadband emission. 
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Figure Sa. 
normalized time for the whistler instability (1 in Fig. 4). 

I'(zo,t), with zowco/c = 50, as a function of the 

Figure 5b. I'(zo,t), with zowco/c = 50, as a function of the 
normalized time for the relativistic instability (2 in Fig. 4). 
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Figure 6a. Fkequency spectrum of the I'(z,,t) shown in Fig. 5a. 

Figure 6b. Fkequency spect:nrm of the I'(zo, t )  shown in Fig. 5b. 
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We have also done a pinch-point analysis for electromagnetic instabili- 
ties propagating across go that are generated by a ring distribution function 
of electrons. We have studied those instabilities whose phase velocities are 
greater than the speed of light and, thus, are not affected by cyclotron 
resonance damping. Furthermore, we have restricted ourselves to the case 
of wpo/wco << 1 (which is an appropriate limit for the conditione that 
exist in the source regions of the auroral kilometric radiation). Instabili- 
ties are generated near the electron cyclotron frequency and its harmonics. 
We observe an interesting space-time behavior of thest instabilities as a 
function of wpo/wco. For very small densities (wpo/wco k: 0.05 with uvI = 0 
and v, = 0.1~) the instability near the fundamental electron cyclotron fro 
quency is an absolute instability while the instabilities at the harmonics 
are convective instabilities. As wpo is increased the instability at the second 
harmonic also becomes an absolute instability. For further increases in wpo 
(wpo/wco 0.25) the instability at the fundamental cyclotron frequency 
becomes convective while the instability at the second harmonic remains 
as an absolute instability. Hence, we have harmonic generation from a 
completely linear theory. These results should be important in explaining 
the observed emission at harmonics of the electron cyclotron frequencies 
in the auroral regions [14]. Details of all the results on the propagation of 
instabilities across the magnetic field will be published elsewhere. 

CONCLUSIONS 

A pinch-point, Green’s function analysis of electron cyclotron maser 
instabilities has been shown to yield observationally interesting features 
about the space-time propagation of such instabilities. An absolute insta- 
bility is found to have a narrow-band frequency spectrum while a convective 
instability has a broadband frequency spectrum. This feature should be 
important in correlating experimental observations with theoretical mod- 
els. 

Although, no mention has been made of the nonlinear saturation mech- 
anisms for these instabilities, it is evident from some previous results [l] 
that the nonlinearly saturated state of an absolute instabaty is very dif- 
ferent from that of a convective instability. In general, observed emissions 
are from nonlinearly saturated states of instabilities that have evolved in 
either an absolute or a convective manner in their linear stage. These non- 
linear states can be expected to carry signatures of whether, linearly, the 
instability was of an absolute type or a convective type. This aspect needs 
to be accounted for when modeling experimental observations. 
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APPENDIX B 

Space-Time Analysis of Electromagnetic Instabilities 

- A K Ram and A Ben (Both at: Plasma Fusion Center, MIT, 
Cambridge, MA 02139; 617-253-2595) (Sponsor: T Chang) 

- We present results on the space-time evolution of electromagnetic 
mstabilities in plasmas with anisotropic velocity distributions in 
a magnetic field. The space-time analysis classifies the propa- 
gation of instabilities into one of only two possible categories - 
absolute or convective.' Associated with each category are dis- 
tinct observable features: an absolute instability Iias a narrow 
frequency bandwidth while a convective instability typically has 
a broad band emission; the propagation and nonlinear saturation 
of these instabilities are also very different. The insiabilities con- 
sidered are those that propagate either along the magnetic field 
or across the magnetic field, and are generated bry relativistic, 
highly anisotropic, electron distribution functions. Such distri- 
bution functions mise in the auroral regions and are considered 
to be sources of the observed auroral kilometric radiation.' For 
instabilities propagating across the magnetic field we consider 
both the ordinary and the extraordinary (x) modes. The insta- 
bilities are generated at the electron cyclotron frequency (Wee)  

and its harmonics. For low electron densities, the x-mode is an 
absolute instability at wee and a convective instability at the har- 
monics. As the density is increased the instability at wee becomes 
convective while that at becomes absolute, thereby, leading 
to harmonic generation of radiation by a linear mechanism. 
'Work supported by NASA Grant No. NAGW-204,B. 
*A. Bers in Handbook of Plasma Physics, Gen. Eds. M. W. Rosen- 
bluth and R. 2. Sagdttv, North-Holland Publishing Company 
(1983); A. Bers, A. K. Ram and G. fiancis, Phys. €Lev. Lett. a, 
1457 (1984). 

'C. S. Wu and L. C. Let, Astrophys. J. m, 621 (1979). 
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APPENDIX C 

GEOPHYSICAL RESEARCH LETTERS, VOL. 19, NO. 2, PAGES 143-145, JANUARY 24, 1992 

COMMENTS ON ABSOLUTE AND CONVECTIVE INSTABILITIES 

A. E:. Ram and A. Bers 

Plasma Fusion Center and Research Laboratory of Electronics, Massachusetts Institute of Technology 

Abstract. We point out the misconceptions in the 
arguments put forth by Oscarsson and Rlinnmark [1.986] 
that question the validity and usefulness of the well-known 
theory of absolute and convective instabilities. The solid 
basis of the well-known theory is clarified. 

Introduction 

Absolute or convective evolutions of instabilities can 
produce very different signatures of observed radiation 
from unstable plasmas. This is particularly useful in 
space plasmas when correlating experimentally observed 
emissions with theoretical models describing the source 
regions [Ram and Bers, 19911. A letter [Oscarsson and 
Ronnmark, 19861 has questioned the basis and usefulness 
of the theory of absolute and convective instabilities by 
using some singular examples. The arguments put forth 
by these authors, based upon their singular examples, are 
misleading. Furthermore, the notion of a time-asymptotic 
limit is treated in an imprecise manner by these authors. 

The theory of absolute and convective instabilities 
[Briggs, 1964; Bers, 19831 describes the linear evolution 
of instabilities from an initially localized source in an in- 
finitely homogeneous medium. In this paper we clikfy 
the conditions for the validity of the theory of absolute 
and convective instabilities, and, furthermore, show that 
the examples discussed in the aforementioned letter are 
not generic for continuous media and do not invalidate 
the theory of absolute and convective instabilities. 

In what follows, we shall consider the case of evolu- 
tion of instabilities in time and in one spatial dimension. 
The generalization to higher spatial dimensions is more 
complicated but can be carried out in a straightforward 
manner. 

Space-Time Evolution of Instabilities 

The theory of absolute and convective instabilities is 
based on a Green’s function analysis of equations describ- 
ing the space-time dynamics of a small-amplitude pertur- 
bation in a spatially homogeneous and a time-invariant 
medium. The equation for the Green’s function, G(z, t) ,  
is given by: - 

L G(s,t) = 6(a)  6(t) 

where is, in general, a linear integro-partial-differential 
operator with constant coefficients. Using complex 
Fourier-Laplace transforms, the solution to (1) car1 be 

(1) 

Copyright 1992 by the American Geophysical Union. 

Paper number 91GM2953 
W4-8534/92/91GL-02953$03 .OO 

written as: 

G(z,t) = LE LZ D(k,w) exp(ika-iwt) (2) 

where D(k,w) is the dispersion function for the system 
- directly related to the transforms of E, and L and F 
are the appropriate Laplace and Fourier contours, respec- 
tively, chosen to satisfy causality [Bers, 19831. 

The time-asymptotic evolution of G(z, t) can belong 
to one of only two possible categories [Landau and Lif- 
shitz, 1953; Bers, 1983 and references therein]: 

an absolute instability, where the response grows in 
time and encompasses more and more of the space 
as a function of time - the response always including 
the spatial location of the initial perturbation; thus, 
every spatial point eventually becoming unstable, i.e. 
having temporally growing fields; 
a convective instability, where the initial response 
grows in time but propagates away from its point of 
origin; thus, any spatial point eventually becoming 
stable, i.e. having temporally decaying (or oscillatory) 
fields. 
As shown by Bers and Briggs [Briggs, 1964; Bers, 

19831, for an unstable medium [an unstable medium is 
one for which D(k,,w) = 0 (k, being the real-k) gives at 
least one branch, w(k,), that has a positive imaginary 
part, wi(k,) > 0, for some k,], this distinction in the time- 
asymptotic behavior of (2) is obtained by determining the 
pinch-point saddles in k (at k = ko), and the associated 
branch points in w (at w = wo) given by: 

The time asymptotic Green’s function is dominated by 
the pinch point associated with the largest value of woi 
(woi being the imaginary part of wo). If that woi is positive 
then the instability evolves as an absolute instability. If 
woi is negative for all the pinch points then the instability 
will evolve as a convective instability. 

Discussion of the Examples used in 
Oscarsson and Rlinnmark [1986] 

Before we consider the examples in Oscarsson and 
Rlinnmark [1986], two remarks are in order. First, the 
notion of time-asymptotics should not be considered, triv- 
ially, as simply t + 00; in this limit any linear instabil- 
ity will have long violated the, ab-initio, assumption of 
small-amplitude fields. A time-asymptotic state is estab- 
lished as soon as the contribution from the pinch point 
with the largest woi dominates over the contribution of 
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the pinch point with the next largest woi; this gives a 
time-asymptotic time scale which is quite finite. The 
importance of nonlinear effects over such time scales of 
evolution must, of course, be assessed separately; this 
notwithstanding, the linear theory of absolute and con- 
vective instabilities has important applications in its own 
right. The nonlinearly saturated state can depend CN- 
aally on whether an instability evolves as an absolute or 
as a convective instability during its linear stage [Ben, 
19831. 

Second, the evolution of an arbitrary initial perturba- 
tion, $o(z) at t = 0, is obtained by convolving the Green’s 
function with $o(z) [Morse and Feshbach, 19531. Clearly, 
if $o(z) is spatially localized, $(z, t) will evolve in a man- 
ner determined by the Green’s function. Thus, if the 
Green’s function analysis indicates the medium is ab- 
lukly (convectively) unstable, $(z, t) will evolve as an 
absolute (convective) instability. However, if $o(z) ex- 
tends all the way to f o o  then $(z, t )  may not, in general, 
evolve in a manner indicated by the Green’s function. 

We now consider the examples treated in Oscarsson 
and Knnmark [1986] and show that they arc not char- 
acteristic of space-time evolution of instabilities; they de- 
scribe an instability that evolves essentially in time only 
and, thus, are singular examples. The dispersion function 
of Osuvsson and RZnnmark [1986] is: 

D(k,w) = w - kvo - i7 (4) 

where vo and 7 are constants. The corresponding equa- 
tion describing the evolution of the electric field, E(z, t), 
is of the form: 

This is a hyperbolic partial differential equation with its 
characteristics given by z - vot = constant. It is easy 
to realize that (5) is a singular equation which is not 
generic of space-time evolution. If we replace z and t 
by t = z - vot and T = t ,  respectively, then ( 5 )  becomes: 

Obviously, this equation describes the evolution of E in 
time and has nothing to do with space-time. So the con- 
cept of an absolute or convective evolution of an instabil- 
ity, which defines the space-time response of a medium, 
is not defined for such an equation. The solution to (6) 
is: 

E(<,T) = - T o )  Eo((,To) qT - To) (7) 

where is the initial prescribed value of the field at 
T = TO, and 8 is the Heaviside function needed to satisfy 
causality. Thus, the solution to (5) is: 

E(z, t) = e7(t - to) EO(Z - vot, to) e(t - to) (8) 

This equation implies that the field at a point z at time 
t has grown uniformly in time (at the rate given by 7) 

from the value of the field at position z - vot at time to. 
There is only a trivial spatial evolution of the field along 
the characteristics. 

The Green’s function for (5) is: 

For vo # 0, this shows that the instability convects away 
from its initial point of origin. However, in a reference 
frame moving with velocity VO, the instability just grows 
in time without any spatial evolution. The case when 
vo = 0 docs not represent any space-time evolution; thus, 
there is no pinch point to speak of and it is irrelevant to 
speak of absolute or convective instability. This, again, 
points out the singular nature of the dispersion func- 
tion in (4). This is not 8 restriction on the applicabil- 
ity of the theory of absolute and convective instabilities. 
Rather, the point is that when a simplified dynamic de- 
scription ignores space-time evolution there is no reason 
for distinguishing between absolute and convective insta- 
bilities. For example, the ion-acoustic wave instability, 
when treated properly, has a well-defined space-time e v e  
lution [Fkancis et al., 19861; its simplified representation 
by a dispersion relation such as given by (4) would not 
describe its space-time evolution. 

It is important to realize that, for the dispersion func- 
tion of (4) with vo # 0, the spatial width of any instabil- 
ity docs not change with time. For plasmas described by 
non-singular dispersion relations, this is not the case for 
either absolute or convective instabilities. Any arbitrary 
perturbation, in general, will spread spatially beyond its 
original spatial width. By choosing initial perturbations 
that extend all the way to foo, Oscarsson and Riinnmark 
[1986] have attempted to create the impression that the 
perturbations evolved spatially (instead of just tempo- 
rally). We highlight that aspect by considering in detail 
one of the examples they used. 

By using the Green’s function given above, the time 
evolution of an initial perturbation: 

E(z,O) = exp(-z2/d2) exp(-ikoz) (10) 

is given by [Mom and Feshbach, 19531: 

(11) 
E(z, t) =  ex^ { -(z - vot)’/d2} x 

exp (-iko(z - vot)} 

All points in space, in the coordinate system moving with 
velocity VO, grow at the same rate. This can be further 
emphasized by choosing E(z, 0) to be initially localized: 

E(z, 0) = exp(-z2/d2) exp(-ikoz) x 

where 1 can be chosen to be as large as one wants. Then 
it is easy to show that at any time t > 0 the field will 
be m&ed to a spatial width of 21 and will not extend 
beyond that width. 
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APPENDIX D 

Space-Time Propagation of Electromagnetic Instabili- 
ties Across the Magnetic Field in Auroral Regions' 

A K Ram and A Bus (Both at: Plasma Fusion Center, MIT, 
Cambridge, MA 02139; 6:17-25~2595) 
(Sponsor: AGU Member) 

We have shown that the space-time analysis of instabilities leads 
to distinctly observable features that can identify whether an in- 
stability is absolute or conve:ctive.' An absolute instability has a 
narrow frequency bandwidth while a convective instability typi- 
cally has a broad band emission. We consider instabilities that 
propagate across art ambient, skady-state magnetic field, and 
are generated by relativistic, highly anisotropic, electron distri- 
bution functions. Such distribution functions arise in the auroral 
regions and are considered to be sources of the observed auroral 
kilometric radiation.2 We study the propagation of the ordinary 
and the extraordinary (x) mtdes. The instabilities are generated 
at the electron cyclotron frequency (wee) and its harmonics. For 
law electron densities, the x-mode is aa absolute instability at 
w,, and a convective instability at the harmonics. As the density 
is increased the instability at; w,, becomes convective while that 
at be, becomes absolute, thereby, leading to harmonic gener- 
ation of radiation by a Linear mechanism. Detailed results for 
these instabilities and the effect of a cold background plasma on 
the propagation of these instabilities will be presented. 
'Work supported by NASA Grant No. NAGW-2048. 
'A. K. Ram and A. Bers in Physics of Space P l a s m  (1990), Pro- 
ceedings of the 1990 Cambridge Workshop in Geoplasma Physics, 
Eds. T. Chang, G. B. Crew, and J. R Jaspetse (Scientific Pub- 
lishers, MA). 
'C. S. Wu and L. C. Let, Astrophys. J. a, 621 (1979). 
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ABSTRACT 

A tutorial account of spatiotemporal chaos (STC) in the nonlinear 
three wave interaction (3WI) is presented. The concept of STC is discussed 
and the 3WI is used as a paradigm for STC. Previous results of the 3W1, 
including time only solutions, low dimensional chaos, spacetime parametric 
interactions, solitons and the inverse scattering transform will be reviewed. 
These results will then provide the foundation to understanding STC in 
the 3WI. 

I. INTRODUCTION 

In the recent past the area of nonlinear dynamics has witnessed two 
major discoveries-dynamicd chaos and the inverse scattering transform 
(IST). Chaos is customarily defined to mean randomness in deterministic 
systems due to extreme sensitivity of initial conditions; considerable atten- 
tion has been given to mostly low dimensional or few degree of freedoms 
dynamical systems [l, 23. Although the ground work for chaos was laid 
out by P o i n d ,  it was the advent of computer simulations that led to 
the explosion of results and excitement in the last decade. The IST is a 
method to integrate certain special nonlinear partial differential and dif- 
ference equations. These equations are usually associated with exhibiting 
solitons, nonlinear structures that preserve their form and collide elasti- 
cally. Soliton solutions can be explicitly calculated with IST. The IST 
was first used by Gardner, Greene, Kruslral and Miura [3] to solve the 
Korteweg-deVries equation. It was later discovered that their method was 
applicable to other PDE’s [4,5] and in the ensuing years the growth of the 
field has been prodigious. 

With these two discoveries some natural questions come to mind: (1) 
What happens when more dimensions or degrees of freedom are added to 
a low dimensional chaotic system? (2) What happens when a spatially 
extended system, integrable by IST is perturbed slightly to break the inte- 
grability? Both of these questions will be addressed in this paper. The 3WI 
is a system that can be used to answer these questions. The conservative 
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form of the 3WI in space and time is integrable by IST, and the noncon- 
servative form in time only (spatially uniform) is chaotic. The dynamics 
of a nonconservative, nonintegrable spatially extended form of the 3WI 
was recently studied by us. The result is what has come to be called spa- 
tiotemporal chaos (STC). The term STC specifically refers to the chaotic 
evolution of patterns or coherent structures at a specific length scale in 
a spatially extended system [6-91. This is in contrast to fully developed 
turbulence where there is a cascade to smaller scales. The study of turbu- 
lence has been around for many decades and a variety of approaches have 
had only limited success in its description. It was once thought that chaos 
may have finally provided an answer. It is now believed that this is not 
the case [lo]. ‘hbulent flow is full of coherent structures at all scales and 
is much more complicated than low dimensional chaotic dynamics can ad- 
dress. STC lies in a regime between the two extremes and is an interesting 
dynamical state in its own right. 

The paper is organized as follows. The 3WI is introduced in section 
I1 and discussed in some detail. This is followed by the spatially uniform 
or time only dynamics in section 111; both the integrable and chaotic sit- 
uations are reviewed. Section IV is devoted to the spatiotemporal 3WI; 
the linearized parametric instability and the IST solutions of the nonlinear 
equations are reviewed. Finally in section V, a discussion of STC in general 
and its manifestation in the 3WI is presented. 

11. THE NONLINEAR THREE WAVE INTERACTION 

The nonlinear 3WI appears in many contexts within the fields of 
plasma physics, nonlinear optics and hydrodynamics. Ref. 11 provides 
an excellent review of its applications. It can occur whenever: (1) a weakly 
nonlinear medium supports a set of discrete waves 

(2) The nonlinearity is manifested as a coupling of slowly varying linear 
field amplitudes, (3) The lowest order nonlinearity is quadratic in the field 
amplitudes, and (4) the three coupled waves satisfy the resonance condi- 
tions 

w i = w j + w c  (2) 

k, = kj + k,. (3) 

These last two conditions are akin to conservation of energy and momen- 
tum. If these conditions are satisfied and the nonlinear coupling is conser- 
vative then a slowly varying amplitude or wave packet expansion will yield 
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the conservative and integrable nonlinear 3WI [12, 131 

where the a's are the slowly varying complex wave envelopes, K is a cou- 
pling coefficient and the v's are the group velocities. The above form of 
the 3WI is integrable by IST. Wave ai will be referred to as the parent and 
the other two waves are the daughters. The solution will be discussed in 
section IV. 

In many physical situations there will not be exact integrability. For 
instance the linear waves may have some growth or damping associated 
with them 

w1 = 4 k l )  + i71(kl) (7) 
There may also be the situation where the resonance is not exact so that 

This results in a dephased interaction. From these considerations a non- 
conservative form of the 3WI can be derived [12, 14,151: 

Here the 7 ' s  are growth or dissipation coefficients and D is a diffusion co- 
efficient. This last term in Eq. (9) is usually not included in the 3WI; aa 
will be detailed in section IV its presence'is essential for nonlinear satura- 
tion and the long time behavior of the equations. It arises if the growth of 
the parent is assumed to have a slow spatial variation. It then gives the 
simplest reflection invariant cutoff in wavenumber of the growth. 

These equations ignore wave particle 'quasilinear' interactions whose 
lowest order effect is also second order in the field amplitudes. The particles 
are assumed to be nonresonant with the waves. In a generalized amplitude 
expansion the 3WI is the lowest order nonlinear effect and so the 3WI 
will dominate other nonlinear effects if the resonance conditions (2) and 
(3) can be satisfied. For instance the celebrated nonlinear SdGdinger 
equation would come in at a higher order. Only one spatial dimension will 
be considered in the paper. 
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111. TIME ONLY EVOLUTION 

The 3WI in time only has the form: 

The conservative, resonant interadions ( T ~  = 0,6 = 0) are easily solved 
in terms of Jacobi elliptic functions [16-181. The solutions are oscilliatory 
with a period 

With the addition of the nonconservative terms closed form solutions do 
not exist. However, we can consider an initial situation where the daughter 
wave amplitudes are small. Then the equations can be linearized. This is 
known as a pammetric interntion. Linearizing (12) yields 

The other two equations become 

Now assume that ai(t) is very slowly varying and substitute in the following 

This then yields the dispersion relation 

The threshold for instability is given by 9 > 7 j 7 h .  So for a slowly grow- 
ing high-hquency mode ai there will always be a parametric interaction 
instability, The question is what happens nonlinearly. 

This question was studied in references [19-211. It was shown that 
there is no nonlinear saturation unless the interaction is off resonance (i.e. 
6 # 0). In those works the damping rates of the two daughters were chosen 
equal. The essential parameters governing the dynamics were the dephasing 
6 and the ratio of the dissipation to the growth 7j/7i. Depending on the 
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values of these parameters they observed regions of no saturation, stable 
equilibrium, period doubling route to chaos, and intermittency. 

N. SPACETIME EVOLUTION 

The spacetime conservative 3WI is integrable by Inverse Scattering 
Transforms (IST) [ l l ,  22-24]. Ref. 11 provides a complete review of the 
solution. IST is a transform technique to solve certain classes of nonlinear 
partial differential equations, and difference equations. Other equations in- 
tegrable by IST include the Korteweg-de Vries, sine-Gordon, and nonlinear 
Schrijdinger equations. One notable feature of IST theory is the ability to 
explicitly calculate soliton solutions. 

In the 3WI the order of the group velocities gives different behavior. 
The case where parent wave has the middle group velocity is known as the 
Soliton Decay Instability. The IST solutions for the conservative case on 
the infinite domain show that solitons exist but they do not necessarily 
belong uniquely to a particular envelope [ l l ,  22,241. Solitons in the parent 
wave tend to deplete to solitons in the daughters which propagate away. 
The simplest soliton solution for decay shows that a soliton of the form 
Iuil = 2qsech2qx, will decay into solitons in the daughters of the form 
lujl = &qsechq(z + u. t ) ,  where q is the IST spectral parameter for the 
Zakharov-Manakov [23f scattering problem. The spectral parameter is also 
the eigenvalue for a bound state in the Zakharov-Shabat [5] scattering 
problem with the parent pulse as the potential function. In the WKB limit 
q is related to the area of the parent pulse through the Bok quantization 
condition [5, 11, 141 lb 1u; - q211'2& = n/2 (21) 

where [a,b] are turning points for a local pulse. A collision between a 
daughter pulse and a parent soliton is necessary to induce the decay of 
the parent [ l l ,  241. For arbitrary shaped parent pulses that exceed the 
area threshold, the soliton content will be transfered to the daughters leav- 
ing the radiation behind. Collisions between daughter solitons are elastic. 
The depletion of the parent into solitons is the nonlinear saturation of an 
absolute instability. The case where the parent wave has the highest (or 
lowest) group velocity is known as Stimulated Back Scatter. In this case 
the daughters can possess solitons but they are not transfered between the 
envelopes. 

The inclusion of growth and dissipation breaks the integrability of the 
3WI just as it did in the time only case. However, the linearized parametric 
instability where the daughters are initially small can be studied as in the 
time only case [12]. Transform to the frame of the parent wave (ui = 0) 
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and consider ai(t) = const >> aj)ak so Eqs. (lo), (11) can be linearized 
[25]: 

where 7 = lK*ail and only one spatial dimension is considered. The dis- 
persion relation is simply 

There is a threshold of instability 

(25) 
2 

7 > 7j7, 7; 

For ujuk > 0 this is a convective instability. For u.uh < 0 (parent has 
middle group velocity) there is an additional thresiold for an absolute 
instability [25]: 

where ai = r i /u l .  
If the parent is spatially varying then one must solve a boundary value 

problem. For u.u < 0 the condition for an absolute instability is the 
existence of a growing normal mode. The WKB condition is given by [25]: J ' t  

where a and b are turning points. Notice that for no damping this condition 
is identical to the condition for soliton possession. 

V. SPATIOTEMPORAL CHAOS 

A. Defmition 

The term spatiotemporal chaos has acquired a more specific meaning 
than simply chaos in space and time. Although there is no official defini- 
tion, STC has come to refer to the chaotic behavior of coherent structures 
or patterns. This is in contrast to the more familiar low dimensional chaos 
and fully developed turbulence. The distinction can be made on the basis 
of length scales. Following Hohenberg and Shraiman [6], for any chaotic 
dynamical system there exist certain length scales. There is: (a) the exci- 
tation length I , ,  the length scale at which energy is put into the system; 
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(b) the dissipation length I,, the scale at which energy is dissipated; (c) 
the' system size L; and (d) the coherence length (. Systems where energy 
is created and destroyed at the same length scale, L - Z E  - I, ,  ( > L, 
correspond to low dimensional chaos. The system is completely spatially 
correlated. On the other extreme, in fully developed turbulence energy is 
usually injected at some large scale and dissipated at a small length scale, 
L > I, >> I,, and the so called inertial range lies between the length 
scales. Also in fully developed turbulence, coherent structures exist at all 
scale lengths and the correlation length is not well defined. However sys- 
tems where energy is injected and dissipated at the same length scale and 
the correlation length is much smaller than the system size, L > I, - I , ,  
( << L, corresponds to the regime of STC. In STC there is no inertial range 
yet spatial degrees of freedom are very important. The clean separation of 
scales also allows a statistical description in that correlation functions are 
well defined. 

B. STC in the 3WI 

This finally leads us to STC in the 3WI. We studied the dynamics of 
the 3WI in one spatial dimension z and time t. For weakly growing and 
damped waves without dephasing the nonconsemative form of the 3WI 
Eqs. (9-11) is 

Otai - DO,,ai - riai = -ajak 
Otaj - %,aj + r j a j  = aia; 

atak + %,ak + 7kak = aiai 

where the a's are complex wave envelopes, the 7's are growth or damping 
coefficients, and D is a diffusion coefficient. We have transformed to the 
frame of the parent wave and normalized the magnitude of the daughter 
group velocities to one. We will consider the case where the daughter 
waves have equal damping (Le. rj  = 7 k ) '  The length and time can then 
be rescaled so that the damping coefficient is unity [26]. 

The group velocities satisfy the condition wl, > vi > w j  (Le. the highest 
frequency parent wave has the middle group velocity, see [27]). In the 
absence of growth, damping and diffusion (rr = D = 0) the IST solutions 
for this group velocity ordering is described by soliton exchange between 
wavepadcets [II, 22-24]. 

We numerically simulated the system on the domain z E [0, L) with pe- 
riodic boundary conditions. We began with random real initial conditions 
and evolved until the transients died away before the system was analysed. 
It can be shown that for real valued intitial conditions the envelopes re- 
main real for all time [ll, 151. We were interested in the large system, long 
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time limit. We considered the case with parameters D = 0.001, = 0.1, 
rj = 7k = 1, and L = 20. These parameters were chosen becase they 
exhibit STC and fall into a regime where perturbation theory is possible. 
However, the system is extremely rich and different parameters do lead 
to vastly different behaviour. Aspects of these different regimes will be 
touched upon later and details are given in [15]. We measured the corre- 
lation function, Sl(z, t)  =< al (z  - d , t  - t')al(d,t') >, where the angled 
brackets denote time averages. 

A sample of the spatiotemporal evolution profiles in the STC regime 
of the parent and daughter envelopes is given in Fig. 1. The length shown 
is one half the system size and t = 0 is an arbitraq time well after the 
transients have decayed. The profile of the parent wave is irregular but 
spatial and temporal scales can be observed. There are coherent structures 
of a definite length scale that can be seen to grow, deplete and collide with 
one another. The profile of the daughter wave shows a sea of structures 
convecting to the left. We only show one daughter, the other will be similar 
but with structures convecting to the right. The correlation functions for 
both the parent and the daughter waves are given in Fig. 2. The parent 
correlation function shows a gradual decay in time. Spatially, there is a 
definite length scale seen in Fig. 1. The daughter function is calculated 
along the characteristic. It has a fast decay followed by a slow decay in 
both time and space. The approach to zero in correlations in both space 
and time indicates STC. Fig. 3 shows the spectrum of static fluctutations 
Sl(t = 0, g). For the parent wave there is a cutoff near g N 10 and a range 
of modes show up as a prominent hump. The cutoff reflects the length 
scale seen in the spacetime profile. For g below the hump the spectrum is 
flat. The daughter spectrum has a cutoff around q N 6 again indicating 
a length scale. Fig. 4 shows the local power s p e c t m  Sl(w,z = 0). The 
spectrum for the parent clearly shows two time scales. The spectrum bends 
over near w N 0.02 which gives a long time scale and a shoulder at w z 0.3 
gives a short time scale. Longer runs with these parameters hint that there 
may be a very slow power law rise of undetermined exponent for kequencies 
below the low w bend similar to that observed in the Kuramoto-Sivashinsky 
equation [6]. The short time scale appears as the growth and depletion cycle 
observed in the spatiotemporal profile. The daughter power spectrum has 
two peaks at high w. One is where the shoulder of the parent spectrum is 
and the other is at twice this frequency. The BpectnIm begins to bend over 
and flatten out at at w N, 0.007. This bend is more pronounced in longer 
runs. It is not known whether the spectrum becomes flat or has a power 
law rise like the parent for frequencies below the bend. 
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Figure 1. Spatiotemporal profiles of (a) the parent wave ai(., t )  
and (b) the daughter wave aj(z,t).  
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Figure 2. Correlation function Sl(z , t )  of (a) the parent wave 
and (b) the daughter wave. 
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The main features of the behaviour can be understood if we consider 
the growth and dissipation aa perturbations about the conservative 3W1, 
as discussed in Sec. IV. With the addition of weak growth and dissipation, 
parent pulses deplete provided they satisfy the WKB threshold condition 
(27). In the normalization of Eqs. (28-30) this condition is [14, 251: 

r b  

The decay products in the daughters are quasi-solitons; they damp as they 
propagate away and do not collide elastically. The soliton content of the 
parent is not completely transferred to the daughters. The parent wave 
with some initial local eigenvalue 77 will deplete and be left with some 
remaining area. This area is due to the conversion of soliton content into 
radiation by the perturbations. This left over area can be represented by 
an effective "eigenvalue" 77'. This remaining part of the parent will then 
grow until it exceeds the threshold for decay. This time denoted by t ,  is 
given by 

1 7 7  t, 2! -In- 
7; 77' 

The cycling time observed in the spacetime profiles is this time plus the 
time required to deplete. The depletion time from IST theory is on the 
order 1/277 and for 7; << 277 this can be neglected and t ,  gives the cycling 
time. By treating the damping and growth as a slow time scale perturbation 
of the IST soliton decay solution described above and ignoring the effects 
of diffusion on this short time scale, a multiple-time scale perturbation 
analysis about the IST soliton solution waa used to estimate 9'. In this 
calculation the ordering ri << rj << 277 was choaen. The small parameter 
is but by simply rescaling in time and space either rj or 'I can be 
scaled to O(1). To leading order this yields [15]: 

'I' N rj. (33) 

The derivation assumes that the decay time for a soliton is vcry much faster 
than the growth and damping time. Simulations for parent soliton intial 
conditions veriry Eq. (33) [15]. In order to complete the calculation for the 
cycling time t ,  it is necessary to estimate the threshold local 77 required for 
decay. By comparing the Bohr quantization condition (21) with the WKB 
condition for decay with damping (31) we know that q > yj. Using the 
IST scattering space perturbation theory developed by Kaup [ll, 28, 291 
and recently reviewed in Ref. 30, we constructed the time dependence of 
the IST scattering data due to the perturbation. The same ordering as the 
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multiple scale calculation was chosen. F'rom this we were able to estimate 
to leading order to be [15]: 

where fp is the parent correlation length and will be defined later. Eq. (34) 
is sensitive to the amplitudes of the colliding daughter amplitude that in- 
duces the decay. The calculation assumes the decay is induced by collisions 
with quasi-solitons with the same phase from each daughter generated two 
correlation lengths away. The relative phases of the colliding daughters is 
very important. Consider real amplitudes for the moment, Eq. (28) shows 
that two daughter quasi-solitons with opposite signs (phase) actually rein- 
force the parent rather than make it deplete. Thus expression (34) should 
be considered more of a lower bound. In the simulation, radiation and dif- 
fusive effects will be relevant and may also further delay the decay of the 
parent. Fkom 7 we are able to estimate the daughter correlation length. 
This is given by the quasi-soliton width f d  N 2 / q .  

The long time behaviour is governed by the diffusion. The trivial fixed 
point of Eqs. (28-30) is given by: 

aj = a h  = 0 (35) 
2 azzai + qoai = 0, 

where qo = 7 J D .  Modes with q > go will damp and those with q < qo 
will grow. Thus the fixed point is always unstable to long wave length 
fluctuations. However, when a local area between two turning points of 
the parent wave contains a bound state with eigenvalue q it will deplete. 
In the depletion process broad parent pulses will be decimated. The growth 
in the q < qo modes are thus saturated nonlinearly. This results in long 
wavelength distortions beyond lengths 27r/qo. The principal mode qo was 
observed as the cutoff in the spectrum of static fluctuations (Fig. 3a). 
The mode qo defines the correlation length for the parent, f N 2n/q0. If 
D = 0 there will not be any nonlinear saturation of the instagility because 
qo would become infinite and so would the amplitude required to fulfill the 
area threshold (31). 

The long time scale for the parent rp is given by the diffusion time 
across a length fp giving r CY ( 2 ~ ) ~ / 7 ~ .  This is the time scale in which the 
local parent structures wifi shift postition, collide with other structures or 
diffuse away. The long correlation time observed in the daughters is as- 
ciated with the interaction of the daughter quasi-solitons with the parent 
structures. Whenever quasi-solitons collide with the parent Structures they 
may induce a decay and create a new quasi-soliton where the collision oc- 
curred. This would lead to a long correlation time for the daughters. As the 
parent structures drift so would the creation location of new quasi-solitons. 
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However because the quasi-solitons have a different width than the parent 
structures, the long time scale for the daughters would be given by the 
diffusion time across a quasi-soliton width yielding Td 2i 4/(q20). The 
newly created quasi-soliton damps while it continues to propagate along 
the characteristic. However when it collides with another parent structure 
it could induce a decay and repeat the process. The parent structures act 
as amplifiers regenerating damped quasi-solitons that collide with them. 

Using the above analysis for the parameters of the simulation we obtain 
the following estimates: rp 21 400, go = 10, Ep N 0.6, '1' 21 1, '1 N 2.2, 
t ,  N 8, <d N 0.9, r d  N 800. These estimates corroborate fairly well with the 
simulation. The estimate for t,  is a bit low compared to the shoulder in 
the parent power spectra at w - 0.3 corresponding to t N 20. However the 
spacetime profiles in Fig. 1 do show some of the parent structures cycling 
near the predicted time scale, so the calculation does predict a lower bound. 

A word should be said about the system size. It is clear with the very 
long correlation times for the daughters that they cycle the box many times 
before correlations decay away. Thus for long times, the temporal correla- 
tion function along the characteristic or at a single spatial location would 
be the same. This was borne out in the simulation. It is unknown what 
the precise boundary effects are since it would be impossible to numerically 
test a system large compared to this long time scale. However with other 
runs of varying length, it was found that the above time scales seem to 
be unaffected by the box size as long as the box is much larger than fP. 
The power law rise for the parent power spectrum below 27r/rP, seems to 
decrease in exponent as the system increases. 

We chose parameters where perturbation theory about the IST solu- 
tions could be applied to try to understand the dynamics. However the 
behavior does dramatically change for different parameter regimes [15]. 
For strong growth rates, the long time scales observed tend to disappear 
and only the growth and depletion cycling time is evident. The parent 
grows strongly and depletes violently preventing the structures to become 
established. The larger the growth rate the larger the amplitudes of the 
quasi-solitons [15]. Another regime is when the diffusion is large so the 
parent structures are much broader than the damping length of the daugh- 
ters. In this situation the daughters grow and damp within the confines 
of a parent pulse. Spatial exchange of information between these pulses is 
very slow. These and other regimes are reported in Ref. [15]. It is quite 
clear that the 3WI in spacetime is an extremely rich system. For weak 
growth and dissipation, it exhibits STC and perturbation theory is able to 
estimate the length and time scales. 
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SPATIOTEMPORAL CHAOS IN THREE WAVE INTERACTIONS 
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ABSTRACT 

It is shown that the saturated state of an unstable wave nonlinearly coupled to two lower frtquency 
damped waves exhibits spatiotemporal chm. The results can be understood by perturbation anal- 
ysis on the conservative nonlinear threewave interaction which is integrable. 

KEYWORDS 

Nonlinear wave interactions; unstable wave saturation; chaos in space-time 

INTRODUCTION 

The nonlinear three wave interaction (3WI) in spacetime has numerous applications to plasma 
physics (Bers, 1975; Kaup et d., 1979). The linear evolution of this interaction dacr iba parametric 
instabilities, both absolute and convective, as well as the stable coupling of waves. We consider the 
case of the nonlinear saturation of a linearly unstable parent wave by coupling to two damped daugh- 
ter waves (Chow, 1991; Chow et d., 1992a; Chow et d., 1992b) This system exhibits spatiotemporal 
chaos (STC). The term STC specifically refers to the chaotic dynamics of coherent structures or 
spatial patterns (Hohenberg and Shraiman, 1989; Coullet et d., 1987; Arrcchi et d., 1990; Cilibuto 
and Caponeri, 1990). This is contrasted with fully developed turbulence where thae  is a cascade 
to small scales, and is different from low dimensional chaos where spatial de- of frecdom arc 
not involved. The conservative form of the 3WI is integrable by inverse scattering transforms (ET) 
and may have soliton solutions (Kaup et d., 1979; Kaup, 1976a; Zakharov and Manakov, 1973). 
We consider the nearly integrable limit of the 3WI and use numerical simulations and perturbation 
theory about the IST solutions to gain some underatanding of the dynamics. 

The 3WI is a ubiquitous interaction that um occur whenever three linear waves arc in resonance in 
a weakly nonlinear medium (Benney and Newell, 196f; Bas, 1975; Kaup, 1979; Chow, 1991). We 
studied the dynamics of a nonconsuvative 3WI in one spatial dimension z and time t. For weakly 
growing and damped waves this 3WI has the form (Chow, 1991; Chow et d., 1992a) 

4q - D8-q - 1% = -aiak (1) 
4 a j  + v&aj + 7,aj = ea; (2) 

&ah + Vkl),ak + 7h4*  (3) 

where the a's arc complex wave envelopes, the 7's are growth or damping coefficients, u's arc group 
velocities (the interaction is described in the frame of the wave packets), the nonlinear coupling is 
taken as unity and D is a diffusion coefficient. The diffusion term is usually not included in the 3WI. 
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This term arises if we assume that the growth of the linear wave has a slow spatial variation. It is 
then the lowest order reflection invariant term that provides a cutoff in wave number of the growth. 
Without this term the problem is not well posed. It will become apparent later that this term is 
essential for nonlinear saturation and is very important in determining the long time behavior.’ The 
subscript i denotes the high frequency unstable parent wave. The other two waves are referred to 
as the daughters. We will consider the case where the daughter waves have equal damping (Le. 
-yj = 7 k ) .  The length and time can then be rescaled so that the damping coefficient is unity. 

The order of the group velocities determines the behavior of the conservative (7 = D = 0) nonlinear 
interactions (Kaup et  al., 1979). If the high frequency wave has the middle group velocity then 
solitons are transferred from the parent to the daughter waves. This case is known as the soliton 
decay interaction (SDI). As an example, this situation may occur in the decay of lower hybrid waves. 
This also corresponds to the nonlinear saturation of an absolute parametric instability in the parent 
wave frame. If the parent wave has the highest or lowest group velocity then soliton exbange is no 
longer possible and the collisions between wave packcts become important. This case is physically 
most common. It is the nonlinear saturation of a convective parametric instability in the parent 
frame. This situation applies for example to the Langmuir decay interaction (LDI) and may have 
implications in the saturation of stimulated Raman scattering (SRS) observed in intense laser-plasma 
interactions (Batha et al., 1991). In the nonconservative nonlinear interaction described by (1)-(3) 
both SDI and LDI exhibit STC. The fist  is described in Section 2 and the second in Section 3. 

SOLITON DECAY INTERACTION 

For SDI the group velocities satisfy the condition UJ, > 0 > uj &e., the highest frequency parent wave 
has the middle group velocity’). In the absence of growth, damping and diffusion (71 = D = 0) the 
IST solutions for this group velocity ordering is described by soliton exchange between wavepackets 
(Kaup et al., 1979; Kaup, 1976a; Bers et d., 1976). 

We numerically simulated the system Eqs. (1)-(3) on the domain z E (0, L) with periodic boundary 
conditions. We began with random real initial conditions and evolved until the transients died away 
before the system was analyzed. It can be shown that for real valued intitial conditions the envelopes 
remain real for all time (Kaup et al., 1979; Chow, 1991). We were interested in the large system, 
long time limit. We considered the case with parameters D = 0.001, 7i = 0.1, 7j = 7 k  = 1, and 
L = 20. These parameters were chosen because they exhibit STC and fall into a regime where the 
results can be understood by perturbation theory on the conservative solution. However, the system 
is extremely rich and different parameters do lead to vastly different behavior. Aspects of thcse 
different regimes will be touched upon later and details are given in (Chow, 1991). We measured 
the correlation function, Sl(z,t) =< a1(z - z‘,t - t’)q(z‘,t’) >, where the angled brackets denote 
spacetime averages. 

A sample of the spatiotemporal evolution profiles in the STC regime of the parent and daughter 
envelopes is given in Fig. 1. The length shown is one half the system size and t = 0 is an arbitrary 
time well after the transients have decayed. The profile of the parent wave is irregular but spatial 
and temporal scales can be observed. There are coherent structures of a definite length scale that 
can be seen to grow, deplete and collide with one another. The profile of the daughter wave shows 
a sea of structures convecting to the left. We only show one daughter, the other will be similar 
but with structures convecting to the right. Figure 2 shows the spectrum of static fluctuations 
Sl(t = 0,q).  For the parent wave there is a cutoff near q 2: 10 and a range of modes show up as 

‘An equivalent set of 3WI equations can be written in two spatial dimensions (e.& z and y) for nonlinuu interactions 
in the steady state (Kaup et d., 1979); the equations arc of the same form where t is y rad, in each equation, all 
other term are divided by the ycomponent of the group velocity of the wave. Thus the solutions we describe (z, t )  
apply alro to (r,y) with appropriate boundary conditions. 

’In the twwdimensional steady-state, see (Kaup et d., 1979) and (Benney and Newell, 1967), thir condition 
involver only the ratios of group velocity componentr. 
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a prominent hump. The cutoff reflects the length scale seen in the spacetime profile. For q below 
the hump the spectrum is flat. The daughter spectrum has a cutoff around q = 6 again indicating 
a length scale. Figure 3 shows the local power spectrum SL(W, z = 0). The spectrum for the parent 
clearly shows two time scala. The spectrum bends over near w z 0.02 which gives a long time scale 
and a shoulder at w 2: 0.3 gives a short time scale. The short time scale appears M the growth 
and depletion cycle observed in the spatiotemporal profile. The daughter power spectmm has two 
.peaks at high w. One is where the shoulder of the parent spectrum is and the other is at twice this 
frequency. The spectrum begins to bend over and flatten out at at w z 0.007. 

The main features of the behavior can be understood if we consider the growth and dissipation 
as perturbations about the conservative 3WI. The IST solutions for the conservative case on the 
infinite domain show that solitons exist but they do not necessarily belong uniquely to a particular 
envelope. Solitons in the parent wave tend to deplete to Solitons in the daughters which propagate 
away. The simplest soliton solution for decay shows that a soliton of the form = 29sech292, 
will decay into solitons in the daughters of the form 1ajl = &sechq(z + ujt), where 9 is the IST 
spectral parameter for the Zakharov-M~akov (Zakharov and M M ~ ~ o v ,  1973) scattering problem. 
The spectral parameter is also the eigenvalue for a bound state in the Zakharov-Shabat (Zakharov 
and Shabat, 1971) scattering problem with the parent pulse as the potential function. In the WKB 
limit q is related to the area of the parent pulse through the Bohr quantization condition 

where [a,b] are turning points for a local pulse. A collision between a daughter pulse and a parent 
soliton is necessary to induce the decay of the parent (Bers et d., 1976; Kaup et d., 1979). For 
arbitrary shaped parent pulses that exceed the area threshold, the soliton content will be transferred 
to the daughters leaving the radiation behind in the parent pulse. Collisions between daughter 
solitons are elastic. 

With the addition of weak growth and dissipation, parent pulses deplete provided they satisfy the 
WKB threshold condition (Chow et al., 1992a; Bers, 1983). 

l1.t - 7;l”’d.Z > n/2. (5) 

The decay products in the daughters are quasi-solitons; they damp as they propagate away and do not 
collide elastically. The soliton content of the parent is not completely transferred to the daughters. 
The parent wave with some initial local eigenvalue 9 will deplete and be left with some remaining 
area. This area is due to the conversion of soliton content into radiation by the perturbations. This 
left over area can be represented by an effective ‘eigenvalue’ 9’. This remaining part of the parent 
will then grow until it exceeds the threshold for decay. This time denoted by t. is &en by 

(6) 

The cycling time observed in the spacetime profiles is this time plus the time required to deplete. 
The depletion time from IST theory is on the order 1/29 and for vi 29 this can be neglected and 
t ,  gives the cycling time. By treating the damping and growth as a slow time scale perturbation 
of the IST soliton decay solution described above and ignoring the effects of diffusion on this short 
time scale, a multiplotime scale perturbation analysis about the IST soliton solution was used to 
estimate 9’. In this calculation the ordering 7i a yj a 29 was chosen. The small parameter is 7,121 
but by simply rescaling in time and space either 7j or 9 can be scaled to O(1). To leading order this 
yields (Chow, 1991) 9‘ 2: 7j. (7) 
The derivation assumes that the depletion time for a soliton is very much faster than the growth and 
damping time. Simulations for parent soliton initial conditions verify &. (7) (Chow, 1991). In order 
to complete the calculation for the cycling time t,, it is necessary to estimate the threshold local 9 
required for decay. By comparing the Bohr quantization condition (4) with the WKB condition for 
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decay with damping (5) we know that 9 > 7j. Using the IST scattering space perturbation theory 
developed by Kaup (Kaup et al., 1979; Kaup, 1976b; Kaup and Newell, 1978) and recently reviewed 
in Kivshar and Malomed (1989), we constructed the time dependence of the IST scattering data due 
to the Perturbation. The same ordering as the multiple scale calculation was chosen. Rom this we 
were able to estimate 7 to leading order to be (Chow, 1991) 

9 z 2Yj + 4€p7i, (8) 

where is the parent correlation length and wil l  be defined later. Equation (8) is sensitive to the 
amplitudes of the colliding daughter waves that induce the decay. The calculation assumes the decay 
is induced by collisions with quasi-solitons with the same phase from each daughter generated two 
correlation lengths away. The relative phases of the colliding daughters is very important. Consider 
real amplitudes for the moment, Eq. (1) shows that two daughkr quasi-solitons with opposite signs 
(phase) actually reinforce the parent ratha than make it deplete. Because of other effects, expression 
(8) should be considered more of a lower bound. In the simulation, radiation and diffusive effects’ 
will be relenrnt and may also further delay the decay of the parent. nom 9 we are able to estimate 
the daughter correlation length. This is given by the quasi-soliton width & z 2/11. 

The long time behavior is governed by the diffusion. The trivial k e d  point of Eq. (1) is given by 

8=q + dq = 0, a, = ah  = 0, (9) 

where qo = m. Modes with q > qo will damp and those with q < qo will grow. Thus the 
fixed point is always unstable to long wave length fluctuations. However, when a local area between 
two turning points of the parent wave contains a bound state with eigenvalue 9 it will deplete. In 
the depletion process broad parent pulses will be decimated. The growth in the q < qo modes are. 
thus saturated nonlinearly. This results in long wavelength distortions beyond lengths 27r/qp The 
principal mode qo was observed as the cutoff in the spectrum of static fluctuations (Fig. 24.  The 
mode qo defines the correlation length for the parent, tp 2: 2n/qo. If D = 0 there will not be any 
nonlinear saturation of the instability because 0 would become infinite and so would the amplitude 
required to fulfill the area threshold (5). 

The long time scale for the parent T~ is given by the diffusion time across a length tp giving T~ 2: 
( 2 ~ ) ~ / 7 ~ .  This is the time scale in which the local parent structures will shift position, collide with 
other structures or diffuse away. The long correlation time observed in the daughters is associated 
with the interaction of the daughter quasi-solitons with the parent structures. Whenever quasi- 
solitons collide with the parent structwa they may induce a decay and create a new quasi-soliton 
where the collision occurred. This would lead to a long correlation time for the daughters. As the 
parent structures drift so would the creation location of new quasi-solitons. However because the 
quasi-solitons have a larger width than the parent structures, the long time scale for the daughters 
would be given by the diffusion time across a quasi-soliton width yielding 7. z 4 / (qZD) .  The newly 
created quasi-soliton damps while it continues to propagate along the characteristic. However when 
it collides with another parent structure it could induce a decay and repeat the process. The parent 
structures act as amplifiers regenerating damped quasi-solitons that collide with them. 

Using the above analysis for the parameters of the simulation we obtain the following estimates: 
T~ 2: 400, qo = 10, tp 2: 0.6, 9’ z 1, 5 800. These estimates 
corroborate fairly well with the simulation. The estimate for t, is a bit low compared to the shoulder 
in the parent power spectra at w - 0.3 corresponding to t z 20. This is because many effects due 
to radiation, diffusion and strong overlap of the envelopes were not accounted for. However the 
spacetime profiles in Fig. 1 do show some of the parent structures cycling near the predicted time 
scale, K) the calculation does predict a lower bound. 

A word should be said about the system size. It is clear with the very long correlation timer for the 
daughters that they cycle the box many times before correlations decay away. Thus for long timu, 
the temporal correlation function along the characteristic or at a single spatial location would be 
the same. This was born out in the simulation. It is unknown what the precise boundary effects 

2: 2.2, t ,  2: 8, & z 0.9, 
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are since it would be impossible to numerically test a system large compared to this long time scale. 
However with other runs of varying length, it was found that the above time scales seem to be 
unaffected by the box size as long as the box is much larger than &.. The power law rise for the 
parent power spectrum below 27r/rp, seems to decr- in exponent as the system inawes .  

We chose parameters where perturbation theory about the IST solutions could be applied to try to 
understand the dynamics. However the behavior does dramatically change for different parameter 
regimes (Chow, 1991). For growth rates not small compared to the damping rates, the long time 
scales observed tend to disappear and only the growth and depletion cycling time is evident. The 
parent grows strongly and depletes violently preventing the structures to become established. The 
larger the growth rate the larger the amplitudes of the quasi-solitons (Chow, 1991). Another regime 
is when the diffusion is comparable to the damping so the parent structures are much broader than 
the damping length of the daughters. In this situation the daughters grow and damp within the 
confines of a parent pulse. Spatial exchange of information between these pulses is very slow. These 
and other regimes are reported in Chow (1991). 

LANGMUIR DECAY INTERACTION 

In LDI the group velocities satisfy, without loss of generality, tq, < w j  < 0. For the simulation the 
values uj = -1,u~ = -2 were chosen. Using laser plasma terminology, wave q is referred to as 
the pump wave (PW), wave aj is the acoustic wave (AW) and wave a,, is the backscattered wave 
(BW). The Eqs. (1)-(3) were simulated on the domain t E [O,L) with periodic boundary conditions. 
The long time, large system limit was of interest. Simulations were started with random real initial 
conditions. As in the SDI case the envelopes remain real for all time. The spacetime history 
was recorded for all the envelopes. In the saturated regime the correlation functions St(z,t) =< 
q(z - z‘,t - t‘)al(z’,t’) were computed. As in SDI the parameter set is given by (0,yi). 

Several different parameter sets were used in the simulations. In the first example the parameters 
were: yi = 0.1, D = 0.004 and t = 20. As will be seen later the length plays an important 
role in the dynamics. The spatiotemporal profile of the PW is shown in Fig. 4a. Again furrowed, 
ridgelik ‘coherent’ structures are observed, as in the SDI but with a definite drift towards the 
right. There appear to be length and time scales where things are correlated, but beyond which the 
dynamics becomes chaotic. The correlation function for the PW is shown in Fig. 4b. The function 
approaches zero in space and time indicating STC but a nonlinearly induced mode with a definite 
phase velocity is clearly observed. This effect was observed in the spacetime profiles as the drifting 
coherent structures. The correlation function shows that these structures are very long lived. 

The local power spectrum Si(, = 0 ,w)  is shown in Fig. Sa A definite peak at w .1 is observed; 
the spectrum then flattens out at around w z 0.007 defining a correlation time. The spectrum of 
static fluctuations Si(q,t = 0) is shown in Fig. 5b. A box-like function, as expected, is observed 
with a cutoff at approximately q z 5, translating to a correlation length of &, z 1.3. 
The spacetime profile of the AW is shown in Fig. 6a. Ridgelike coherent structures are seen to drift 
towards the left. For large scales the dynamics are chaotic. The correlation function measured along 
the characteristic t = -t is given in Fig. 6b. There is strong decay in space and time confirming 
STC. However there is a hump located at S(t z 10,t z lo), and another at S(z 1,t z 20). 
The latter is due to the collision of the AW coherent structure after one transit around the box. 
Because the PW is drifting the bump is located away from z = 0. The former bump comes from 
the interaction of the BW with the PW generating the AW. Since the BW travels at twice the 
AW velocity this event occurs at half the time the AW requires to traverse the box. Note that the 
correlation function shown is over the entire length of the system, and the periodicity of the system 
is seen for t = 0. The power spectrum is shown in Fig. 7a. The correlation time corresponds to a 
frequency of w z 0.3. The spectrum of static fluctuations is shown in Fig. 7b. There is a cutoff at 
q z 9 corresponding to a correlation length of (,, 2: 0.7. 
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The spacetime profile of the BW is shown in Fig. 8a. Again w a r  yet distinct structures are 
seen to drift towards the left. The correlation function measured along the characteristic 2 = -2t is 
shown in Fig. 8b. Correlations approach zero in space and time indicating STC. A nonlinear mode 
similar to the parent is also obsemd. The propagating mode implies that the structures found in 
Fig. 8a are not aligned along the characteristic curve but are actually mwing faster. The measured 
phase velocity in the moving frame u z 0.1 indicates that the shift away from the characteristic 
velocity is not very great. Correlations in the direction of the coherent structures are fairly long 
compand to the damping times. The power spectrum along the & a r m t i c  in Fig. 9a shows a 
cutoff around w 5 0.4. The spectrum of rtatic fluctuations in Fig. 9b shows a cutoff around q z 5 
giving a codat ion length of & 

The simulation results can be understood with the aid of linear analysis and the ET solutions. The 
linearized equation for the PW is exactly the name as that for the p a r d  wave in SDI. The trivial 
fixed point Eq. (9) gives a principal mode for the PW at qo = m. Higher modes are damped 
and lower modes are growing. As in SDI there is a competition between linear growth and nonlinear 
saturation. Instead of depletion to quasi-solitons seen in SDI, the saturation mechanism is due to 
the collisions between the envelopes. The balance between the competing effects is also responsible 
for the propagating mode as will be shown. 

The IST solutions which apply to the conservative form of LDI show solitons are not involved (Kaup 
et d., 1979). The interesting dynamics are due to collisional radiation effects. A collision between 
the AW and the PW generates the BW and decimates all the waves (Kaup et d., 1979; Chow, 1991). 
Similar behavior occurs when the BW collides with the PW. The decimation of the parent wave is 
always on the side opposite to that of the collision. This is seen in the IST solutions and can be 
understood from the nonlinear saturation of the corresponding parametric instability. When the AW 
collides with the PW, the BW and AW grow from the colliding edge as a convective instability. This 
is because both of their group velocities are in the same direction. When the two envelopes attain 
a significant amplitude the PW begins to saturate. However the two daughter waves will continue 
to grow and continue to take energy from the PW. The energy of the PW will be reduced. The 
depleting pump cuts off the growth of the two daughter waves and they saturate and begin to damp 
as well. If the original amplitude of the PW is large enough or the growth rate -yi high enough, the 
reduction in area continues until the PW becomes negative. The negative part of the PW can again 
be a source for a convective instability and the same process ensues. In this way the envelopes are 
spatially decimated into the oscillatory structures seen in the simulation. The decimation is always 
on the side of the PW away from the colliding edge. The low q's are converted to high q's by this 
process. Modes higher than qo get damped, so the PW will settle into structures of size tP r= 27r/q,,. 
The valuer qo = 5 and tP 5 1.3, obtained for the simulation parameter set, agree well with the 
simulation. 

1.3. 

The PW equation Eq. (1) has the form of a growing diffusion equation. Thus any localized pulse 
will spread and grow. The propagating PW mode is a result of the combination of this spreading 
effect and the decimation effect. The wavepackets decimate nonlinearly on one side and they spread 
and grow linearly on the other side. A pulse moves like a sandbar near an ocean shore, building 
on one side and receding on the other. A parabolic equation dou not have a well defined phase 
velocity, but a 'spreading' velocity can be defined by considering the trajectory of a point of constant 
amplitude on a localized pulse. The phase velocity of the sandbar mode, as it will be referred to, 
will then be given by this velocity which can be shown to be proportional to a (Chow, 1991). 
From the simulations of several Merent cases it was discovered that the phase velocity behaves as 
vp 5 &. 
The peak in the PW power spectrum is given by the frequency of the sandbar mode. Using the 
relation w = upqo the frequency is found to be w 2: 7i = .l. This is precisely what was observed 
in Fig. 5a. As seen in the correlation function in Fig. 4b, the structures remain coherent for very 
long times. The power spectrum in Fig. 5a was taken along the time axis. The long time scale 
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observed was actually given by the transit time of the sandbar mode around the box r p  2: L/vp. 
It is unknown what the decorrelation mechanism for the PW coherent structures actually is. They 
persist much longer than the diffusion time across a correlation length. 

The saturation energy of the PW can be understood M follows. The competition between the 
nonlinear and linear effects leads to coherent structures of size 27r/q0. The IST aolutions show for 
the conservative case that structures of this size are generated in collisions when the PW has a 
height of ai 2: qo. For taller structures, the collisions with the BW and AW will generate structures 
with smaller wavelengths. The simulations seemed to indicate that thcse results of the integrable 
case carry over to the nonintegrable regime. Then as the PW grows, it gets depleted M it constantly 
collides with the other waves. If it grows higher than q cz qo the generated structures damp away. 
Thus z qo will be an upper bound to the height of the PW. For these parameters qo z 5 and 
the tallest structures in the spacetime profile are of this order. Given the upper bound for the PW 
height, the saturated energy density can be estimated by considering the PW to be composed of 
coherent structures locally resembling a sine wave with avuage amplitude of qo/2. This then gives 
an average energy density of Si(0,O) 2: q i /4  2( 6. The simulation shows a value of Si(0,O) 2: 5. 
Considering the assumptions used in the estimate this is remarkably good. 

It is significant that the correlation length for the AW is one half the correlation length of the 
BW. This is due to the fact that its group velocity is half of the BW. As discussed above the PW 
settles into coherent structures of size Q, and this fixes the size of the BW structures. The AW 
gets generated wherever the BW collides with the PW. In the time direction, along a PW coherent 
structure, the BW and AW will tend to have the same number of coherent structures. This can 
be seen by comparing Fig. 6a with Fig. 8a. However since the AW has a group velocity half that 
of the BW, if it has the same number of structures in the time direction, it must have twice as 
many in the spatial direction. In other words the coherent structures of the AW are half the size 
of the BW. This was observed in the simulation. In the saturated state, a latticolih structure will 
become established. Of course it is only for special cases that a regular lattice can be formed. In 
most cases the lattice will be frustrated. This leads to the lack of regularity and STC observed. It 
would be very useful in the future to measure the cross correlation function between the waves to 
better understand these effects. 

The propagating mode of the BW seen in the correlation function can also be inferred from the IST 
solution. The correlation function showed that the propagation velocity of the coherent structures 
was slightly slower than the characteristic velocity. During a collision between the BW with the 
PW, the two waves will interact nonlinearly and this process retards the transmission of the BW, 
slowing the velocity. 

The AW spacetime profile in Fig. 6a shows a furrowed structure moving to the left like the BW, but 
the correlation function in Fig. 8a does not show the long correlations and evidence of a nonlinear 
mode like the BW and PW. Correlations are quickly damped out compared to the other waves. This 
is likely due in part to the fact that since the group velocity is half that of the BW, it experiences 
twice as much damping between collisions. It may also be that the wave collisions afkct the AW 
more than the other waves. The humps observed in the AW correlation function are due to collisions 
of the AW with the PW and BW waves. The one at (z  l , t  5 20), is due to repeated collisions of 
the AW with a particular PW structure. The correlation times of the PW structures are very long. 
Each time the AW circles the simulation box it will collide with the PW structure. The hump is 
slightly off from the characteristic. This is due to the fact that the PW structure is drifting. The 
hump at (z  z 10,t 2: 10) is due to collisions between a given BW structure and the PW structure. 
Whenever these two waves collide they generate the AW in the process. The BW has group velocity 
twice that of the AW and so transits the box in a time t = 10. In the frame of the AW the hump 
gets shifted in z as well. 
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It would seem that the behavior observed for LDI should persist as the PW growth rate increases 
or the diffusion decreases. The PW structures would reduce in width and this would lead to an 
increase in their amplitude. The ratio of the PW energy to the daughters would approach unity. 
However in the weak growth limit the ratio of the PW energy to the daughter energies would be 

.large. The PW strudurea would become wider and their amplitudes d e r .  The daughter waves 
would damp more betwcen collisions. The coherence times would likely bccome longer as in the SDI 
case. The energies of the daughter waves would also get smaller in comparison to the PW’s and the 
nonlinearity would become less important. Dfierences in the ratios of the velocity would change 
the ratio of the sizes of the AW and BW. Differences in the damping rates on the daughters would 
change the saturation energies. If the disparity were large than the wave with the lower damping 
would dominate the nonlinear collision processes. These dfects were seen in preliminary simulations. 
A detailed analysis remains to be done. 

The spectral broadening and amplitude saturation of the unstable wave occurs for almost all pa- 
rameters. As an application we have considered the saturation of SFU due to decay of the electron 
plasma wave (epw) (Chow, 1991). The unstable epw in SRS can decay rapidly to another epw and 
ion-acoustic wave. The ensuing STC broadens the spectrum and saturates this epw which, for a 
fixed input laser power, leads to the saturation of the scattered wave in SRS. Further details will be 
given in an upcoming publication. 

One of us (C.C.) wishes to thank T. Hwa and D. Kaup for fruitful and interesting discussions. This 
work wlls supported in part by NSF Grant No. ECS-88-2475, LLNL subcontract B160456, DOE 
Grant No. DEFG02-91ER-54109, and NASA Grant No. NAGW-2048. 
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Fig. 1. Spatiotemporal profiles of the parent wave 
a) and daughter wave b) for SDI. 

Fig. 2. Spectrum of static fluctuations Si(g,t 
= 0) of the parent wave a) and daughter wave 
b) for SDI. 

Id 

Id 

2 lo' 
vj- 

lo" 

10" 10" lo" 
w 

Fig. 3. Local power spectrum St(z = 0 , w )  of the parent wave a) and daughter wave b) for SDI. 
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Fig. 4. Spatiotemporal profile a) and correlation function b) of the PW for LDI. 
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Fig. 5. Local power spectrum a) and spectrum of static fluctuations b) for the PW for LDI. 

Fig. 6. Spatiotemporal profile a) and correlation function b) of the AW for LDI. 
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Fig. 7. Local power spectrum a) and spectrum of static fluctuations b) for the AW for LDI. 

Fig. 8. Spatiotemporal profile a) and correlation function b) of the BW for LDI. 
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Fig. 9. Local power spectrum a) and spectrum of static fluctuations b) for the BW for LDI. 
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ABSTRACT 

Wave-particle interactions are an integral part of plasma dynamics 
in space and laboratory plasmas. In this tutorial we discuss the mo- 
tion of charged particles under the influence of waves when the particle 
dynamics is assumed to be dissipation-free so that it can be described 
by a Hamiltonian. Distinguishing features between chaotic and coher- 
ent particle motion are illustrated pictorially using paradigmatic models 
describing the interaction of particles with prescribed waves. 

INTRODUCTION 

The microdynamics of high temperature plasmas are generally de- 
scribed by wave-particle interactions on time-scales for which collisions 
can be neglected. The waves may be internally generated by some plasma 
instability or can be coupled into the plasma from an e-xternal electro- 
magnetic source. In the case of a plasma microinstability, one saturation 
mechanism for the instability arises from the resonant interaction of its 
unstable fields with the charged particles in the plasma: the particles 
gain energy and/or momentum from these fields and, as a consequence, 
their distribution functions are modified. In the case of externally cou- 
pled waves, as occurs for heating plasmas or driving currents in plasmas, 
charged particle interacting resonantly with thee  waves similarly remove 
energy and/or momentum from the wave and in this process their distri- 
bution functions are also modified. It is well-known that the interaction 
of plasma particles with randomly phased mves can lead to irreversible 
changes in the particle's distribution function (quasilinear dynamics in 
the random phase approximation). The importance of Hamiltonian chaos 
is that the interaction of coherent waves with plasma particles can also 
lead to an essentially irreversible change in the distribution function of 
the particles. In general, a modification to the distribution function of 
the particles may lead to changes in the wave propagation properties of 
the plasma, thereby requiring a self-consistent treatment of wave-particle 
interactions. However, in numerous situations of physical interest the 
waves interact with a small number of energetic particles so that the 
bulk of the distribution function, which determines the wave propagation 
properties: is essentially unaffected. 
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In this tutorial we describe some characteristic nonlinear aspects of 
wave-particle interactions in which the waves are assumed to be coherent 
and completely prescribed ab initio, and the particle motion is described 
by a Hamiltonian (i. e. collisionless dynamics). 

The motion of charged particles interacting with coherent eledro- 
magnetic waves in a plasma can exhibit a rich and interesting behavior. 
In particular, for appropriate conditions, the motion of a particle can be- 
come chaotic. In this tutorial we describe important characteristics of this 
chaotic motion and compare them with the case when the particle motion 
is not chaotic, i.e. when it is predictable. In assuming that the waves are 
prescribed, their amplitude, frequency, and wavelengths are given and do 
not evolve with time. The interaction becween the charged particles and 
the waves is taken to be dissipation-free so that there are no other sinks 
or sources of energy or momentum. Thus, the interaction is conservative 
and the motion of a particle can be described by a Hamiltonian. A very 
important aspect of such systems is that volume elements in phase space 
are consemed, i.e. the flow in phase space is incompressible. This is a 
consequence of Liouville’s theorem. Hence, there do not exist any phase- 
space attractors - strange or otherwise - and one is forced to study the 
entire phase space spanned by the Hamiltonian system. W M e  this may 
seem like a daunting task there exlst criteria which determine regions of 
phase space where, for instance, the motion of particles becomes chaotic. 

In the description of particle dynamics that follows, we have tried 
to avoid getting involved in detailed mathematical analysis. Rather, we 
illustrate properties of Hamiltonian dynamics pictorially, based on the 
computations of actual particle orbits. and outline some of the math- 
ematical aspects that help in understanding these nonlinear dynamics. 
We have chosen the so-called standard map as a paradigm to illustrate in 
detail properties of chaotic dynamics. In addition. we discuss the motion 
of particles in a magnetic field being acted upon by an electrostatic wave 
propagating transverse to the magnetic field. This is of relevance to a 
large variety of laboratory and space plasmas. While we are not aware of 
any prior work which has the detailed pictorial illustrations given in this 
tutorial, there do exist two excellent publications [l-31 to which we refer 
the reader for more mathematical details. 

I. MOTION OF .4 CHARGED PARTICLE 
IN AN ELECTROSTATIC WAVE 

The one-dimensional motion of a charged particle of mass rn and 
charge e in a plane electrostatic travelling wave of amplitude E ,  wave 
number k and frequency w is given by the hrentz equation: 

dx 
dt  

= v  - 
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dv eE - = - sin(kz - ut) 
dt m 

where z and v are the position and velocity of the particle, respectively, 
and t is time. In the frame moving with the phase velocity of the wave, 
w / k ,  the above equations become: 

- = p  dq. 
dr 

- asin(q) dP - -  
dr 

where r = ut is the normalized time, p = kv/u - 1 is the particle velocity 
in the wave frame normalized to the phase velocity, q = kx - ut is the 
position of the particle in the wave frame normalized to the wave number, 
and CY = e E k / ( w 2 )  is the normalized amplitude of the wave (the square 
of the particle’s bounce frequency near the bottom of the potential well of 
the wave divided by the square of the wave frequency). These equations 
of motion are identical to those of a nonlinear oscillator whose solutions 
are well-known [-4ppendiu -41. From (2a) and (2b) it can be easily shown 
that the energy H ( q , p )  = p 2 / 2  -+ Q cos(q) (which is the Hamiltonian for 
the above equations of motion) is a constant of the motion. Thus, for 
a given initial condition, the motion of a panicle will lie on a surface 
of constant H ( q l p )  with the constant being determined by the initial 
conditions. The projection of such surfaces onto the q - p plane are 
shown in Fig. 1. The phase space for the motion of the particles can 
be divided into two regions: /HI 5 a, and H > CY. The surface H = Q! 

dividing the two regions is h o r n  as the “separatrix”. The phase-space 
region given by /H[ 5 Q corresponds to panicles trapped in the wave 
potential, while the region given by H > Q corresponds to untrapped, or 
passing, particles (Fig. 1). The trapping width Aptr  = 2 f i  gives half 
the extent in velocity space of the trapped particle region (Fig. 1). 

For a particle that is initially at p ,  = 0 and qo = T ,  we see from 
Eqs. (2a, 2b), that it is undected by the wave. This is a particle at the 
bottom of the wave potential. This point in phase space is known as a 
“fixed” point. Consider a particle in the vicinity of this fixed point with 
q = T + i j ,  p = Fl where lijl, / p /  << 1. Then the constant enerm surface 
on which this particle moves is given by: 

Ti“ + 2 = constant - F2 
201 

(3) 

where the constant on the right hand side is given by the initial conditions. 
The above equation describes an ellipse in phase space and, consequently, 
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Figure 1. Surfaces of constant energy for the nonlinear oscil- 
lator showing the trapping width, p t r ,  trapped motion, un- 
trapped motion, and the separatrix. 

the fixed ( q o , p , )  is known as an “elliptic” &.xed point. Solving Eqs. (2a, 
2b) in the vicinity of the fixed point (qo,po)  shows that motion is oscilla- 
tory with a frequency of fi. Thus, a particle in the vicinity of this fixed 
point will remain in its vicinity for subsequent times. This is apparent 
from Fig. 1. 

From Eqs. (2a, 2b) we h d  that a panicle that is initially at p ,  = 0 
and q1 = 0 will also not be affected by the wave for subsequent times. 
Hence, this is also a fixed point. Consider a particle in the vicinity of 
this k e d  point with q = q, p = i j ,  where IT/, << 1. Then the constant 
energy surface on which this particle moves is given by: 

= constant F2 q2 - - -  
2a 2 (4) 

where the constant on the right hand side is given by the initial conditions. 
This is an equation for a hyperbola and, consequently, the fixed point at 
( q , p )  = (0,O) is known as a “hyperbolic” b e d  point. The asymptotes of 
this hyperbola are: F / f i  = AT. Solving Eqs. (2a, 2b) in the vicinity of 
the hyperbolic k e d  point give: 
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where co and c1 are constants determined by the initial conditions. These 
results show that, for small displacements of a panicle away from the hy- 
perbolic fixed point, along the asymptote F/f i  = the panicle moves at 
an initially exponential rate away from the hyperbolic fixed point. This 
asymptote is known as the “unstable manifold”. For small displacements 
of a particle away from the hyperbolic fked point along the asymptote 
j j /&  = -q, the particle approaches the hyperbolic fked point at an 
exponentially slow rate. This asymptote is known as the “stable man- 
ifold”. The motion of a particle in the vicinity of the hyperbolic &xed 
point and the existence of the two manifolds is apparent from Fig. 1. 
Furihermore, Fig. 1 also shows that the stable and unstable manifolds 
overlap completely. 

For periodic systems of the type discussed above, it is useful to define 
another set of coordinates - the action (I)-angle (6) coordinates [4], 
where 0 5 8 < 2a. For the nonlinear oscillator these coordinates are 
given in Appendix B. The advantage of this new coordinate system is 
that the Hamiltonian can then be expressed as a function of action only, 
H = H ( I ) ,  while the frequency of the nonlinear oscillations !2 is given by 
the time derivative or“ the angle, ie. d6/dt = s2. If we d e h e  a phase-space 
cylinder whose radius is I ,  azimuthai coordinate is 8, and eal coordinate 
is time, then the orbit of a particle with action I winds helically along 
the surface of this cylinder. The orbits of Herent  particles with different 
actions will lie on surfaces of concentric cylinders. The time taken by the 
particle to execute one azimuthal rotation is 2;.r/R, so that the oscillation 
frequency of the panicle is the azimuthal frequency of the motion. If 
we assume that time is periodic, with period T, then it is convenient to 
define a phase-space t o m  whose minor radius is I: poloidal angle is 6, 
and toroidal angle is 4 = 2nt/T. The particle’s orbit then winds along 
the surface of this torus. If we consider the intersection of this torus 
with a plane at &xed 4, then the orbit of the particle will intersect this 
plane every t h e  it completes a toroidal cycle around the t o m .  If for 
a given particle RTI(27r) = r / s  where r and s are any integers, ie. the 
ratio of the particle’s poloidal frequency to the toroidal frequency is a 
rational number, then the change in 6 per toroidal orbit is 27rrl.s. Thus, 
after s toroidal orbits the particle will return to the same value of 8. The 
particle will then intersect with the plane at fixed 4 at only s number 
of points. Such ton are known as rational ton. The ratio of the two 
frequencies is known as the winding number. If the winding number 
is an irrational number, the intersection of the particle’s orbit with the 
constant 4 plane will eventually fonn a closed curve (a circle). Such ton 
are known as irrational tori. The set of discrete points formed on the 
constant q5 surface whenever the particle’s orbit intersects it forms the 
so-called Poincari surface-of-section. The study of this two-dimensional 
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phase-space surface is equivalent to studying the motion of a particle in 
the full three-dimensional phase space [l]. Generalization of these ideas 
to higher dimensional periodic systems can be easily done [II. 

11. CHIFUKOV-TAYLOR MAP OR THE ST-4NDAR.D M,4P 

The one-dimensional motion of a charged particle in an infinite set 
of plane electrostatic waves, where a l l  the waves have the same wave 
number and wave amplitude but whose frequencies are integer multiples 
of a fundamental frequency, is given by: 

dx 
d t  

= v  - 

The corresponding Hamiltonian: 
00 

cos(kz  -nut) V 2  eE 
2 ' m k  

H ( s , v , t )  = - - 
n=-m 

is periodic in time with period T = 27r/w. By csing Fourier series analysis, 
it is easy to show that Eq. (6b) can be re-expressed as: 

00 
dv eE - = -Tsin(kz) 6( t -nT)  
d t  m n=-m 

where 6 is the Dirac delta function. Eq. (8) shows that in this interaction 
the particle receives a periodic kick in time, with period T ,  and with 
the strength of the kick being a function of its position. Using the new 
mriables (8, I , r )  where 8 = kz (0 5 8 < 27i) is the angle, I = kTv is the 
action, and r = t /T is the normalized time, Eqs. (6a) and (8) become: 

d8 - = I  
d r  

where K = kT2(eE/m) is the normalized amplitude. The periodic nature 
of the interaction leads to the following mapping equations [Appendix C] : 
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where (8, , I,) are the angle and the action of the partide just before it 
receives its n-th kick (ie. just before time nT). The mapping equations 
(loa) and (lob) are known as the Chixikov-Taylor map [5, 63 or, more 
commonly? the standard map. This map is a paraciiga for twist maps and 
has been studied extensively in the literature [TI. The mapping equations 
produce a Poincar6 surface-of-section [l, 21 of the motion of the particle so 
that the motion, which occurs in three phase-space dimensions (namely, 
6, I ,  and T ,  with T assumed to be periodic with period 1)’ can be analyzed 
and viewed in two phase-space dimensions (e, I ) .  The mapping equations 
give a set of discrete points formed by the intersection of the particle’s 
orbit with a constant T plane. Moreover, the mapping equations are much 
easier to set up and evolve accurately on a computer than the differential 
equations from which they are derived. 

For unperturbed motion, i e .  K = 0, a particle’s orbit lies on a torus 
of minor radius I (constant of the motion), poloidal angle 8, and toroidal 
angle 6 = 27r~r7. From Eq. (sa) the time taken by the particle to go one 
poioidal cycle is 27r/I, so that the poioidal frequency of the particle’s 
orbit is I .  The toroidal frequency, in our normalized units, is 27r (whicll 
is the same as the normalized frequency of the kicks). Thus, the ratio 
of the poloidal to the toroidal frequency for a particle is I / (&) .  The 
unperturbed phase space for the particles are nested rational (.I/(%) = 
r / s ,  r and s any integers) and irrational tori. 

111. SOME PROPERTIES OF THE ST.4NDARD MAP 

If in Eqs. (loa, lob) we replace I by I + 27, the mapping equations 
remain invariant. So the standard map is periodic in I with period 27r. 
Thus, when looking at a surface-of-section we need to display I becween 
--7; and 7 only. The rest of phase space will look exactly the same. 

Consider a particle whose initial angle 8;’) and action 1;’) are such 
that I!’) = I:’) and = 82) (mod 27r) (2.e. after a kick there is no 
change in the particle‘s action and angle). Here the subscript denotes 
the mapping iteration index and the superscript denotes the number of 
iterates required to come back to the initial values of action and angle 
(modulo 27r). Then, from Eqs. (loa, lob), we note that 8:) = 0 or 7r, 

and 1:’) = 2mr, for m any integer. The points represented by these 
action-angle values are known as fixed points (since they do not change 
their values after any number of kicks). Thus, the standard map has two 
sets of fived points: (8(l), I (1 ) )  = (0,2mr) and (@‘I, I(’)) = (T,  2rn-7;). In 
analogy with the &xed points of the nonlinear oscillator, the stability of 
these fixed points can be easily determined (see e.g. [2]). We find that 
the &st set of fixed points corresponds to hyperbolic k e d  points and the 
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motion in the vicinity of these fixed points is unstable. The second set 
of fixed points corresponds to elliptic fixed points provided I( < 4 and 
the motion in the vicinity of these fixed points is stable. However, for 
K > 4 the second set of fixed points also become hyperbolic. The fixed 
points having the properties discussed here are known as “first order” 
fixed points. An s-th order fixed point, (e(’), I(’)), satisfies the relations: 
8:) = 8, for n = s and not for any other integer 
0 < n < s. An s-th order fixed point corresponds to a particle whose 
orbit lies on a rational torus with I/ (27r)  = r/s for r any integer. 

There is another set of points associated with the standard map 
that are of interest. Consider the case when the amplitude of the wave 
is an integer multiple of 27r, 2.e. K = 27rk (k being a positive integer) 
and a particle’s initial angle is 7r/2 and its initial action is 27rZ (I being 
any integer). Then after each subsequent kick the particle’s action will 
increase by 27rk. If the initial angle was 3 ~ / 2  the particle’s action will 
decrease by 2nk after each kick. These are known as “accelerator modes.” 

(3) (3) (mod 27r), 1:) = I, 

Iv. NUMERICAL RESULTS OF THE STd4NDARD MAP 

In plotting the numerical results for the standard map we need to 
show only the range -7r 5 I < T .  The angle 6, which describes the 
poloidal motion of a particle on the phase-space torus, will be plotted as 
a linear coordinate with period 27r. So, clearly, all values of I at 8 = 2 n  
are identical to those at 8 = 0. Thus, the unperturbed (2.e. h‘ = 0) 
motion of a particle will form a set of discrete points at a fixed I ranging 
in 6 from 0 to 2 ~ .  DSerent particles will correspond to different sets of 
initial conditions. 

Fig. 2 displays the surface-of-section when K = 0.1 for a number 
of different initial conditions. It is easy to identdy the orbit of a given 
particle as most of the orbits form almost closed curves. Whereas all 
the particles’ orbits were along straight lines of constant I for K = 0, 
we see that, for K = 0.1, there is a dramatic modification to the orbits 
which are around I = 0. However: outside this region the orbits are 
small deviations away fi-om straight lines of constant I .  The behavior 
near I = 0 can be easily understood. From Eqs. (6a, 6b), we see that, 
for small amplitudes, a = eEk/(mw2) << 1, the motion of a particle 
resonant with a given wave (labelled n), ie. a particle whose velocity is 
near w / k  (n = 0, fl, f2,. . .), is most affected by that wave. In’other 
words, a particle which is nearly at rest in the frame of one of the plane 
waves will be most affected by that wave. The effect of other waves will 
essentially phase mix to give a very small perturbation. However, as seen 
in the first section, particles whose velocities are near the phase velocity 
of a plane wave are trapped and the motion corresponds to a nonlinear 
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I 

0 7r 27r 

Figure 2. Surface-of-section for K = 0.1 showing a f i s t  order 
phase-space island of trapping width 2m centered at I = 0. 

osdator .  Indeed, Fig. 2 shows exactly the nonlinear oscillator behavior, 
as in Fig. 1, in the region around I = 0. The trapping width for any 
of the plane waves is (nu),", = 2&(w/k), or in terms of the normalized 
action-angle variables: (AI):,. = 2 a .  A quick check of Fig. 2 shows 
that the trapping width is exactly what would be expected from this 
simple aqpnent. LMoreover, the location of the &st order hyperbolic 
and elliptic k e d  points at I = 0, 6 = 0 and I = 0, 6 = ;r, respectively, 
are exactly as indicated in the previous section. 

The consequences of two very important theorems are on display in 
Fig. 2. The first theorem, referred to as the PoincarC-Birkhoff theorem [8],  
states that on a rational torus corresponding to the unperturbed motion, 
with winding number r / s ,  there will remain 21s (1 = 1,2,. . .) number of 
k e d  points after a small perturbation. Since for the unperturbed motion 
1/(27r) = 0 is a rational surface with s = 1, the number of fixed points 
observed in Fig. 2 at I = 0 are in agreement with the Poincari-Birkhoff 
theorem. The similar breakup of other rational ton are not visible in 
Fig. 2 as their trapping widths are very small. The second theorem, 
referred to as the KAM theorem (named after Kolmogorov, Arnold, and 
Moser [9-11]) states that unperturbed irrational tori which are sdiiciently 
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far away from the nearest unperturbed rational tori are stable to small 
perturbations (details of the theorem and the conditions for its validity 
can be found in [2]). Fig. 2 shows many such ton which have been slightly 
modified from their unperturbed forms. Such ton are referred to as KA4M 
ton or KAM sdaces.  

Figure 3 shows the results of the standard map for K = 0.5. Even 
though the amplitude of the perturbation is large, the breakup of the ra- 
tional ton with s = 2 at I = i % / 2  = h and with s = 3 at I = &2n/3, 
in agreement with the PoincarBBirkhoff theorem, can be clearly iden- 
tified. Furthermore, even though the amplitude is greater than that 
required for the rigorous validity of the KAM theorem, there continue 
to be KAM surfaces which persist at this large amplitude. In this figure 
additional features are clearly discernable near I = 0 and 8 = 0. A magni- 
fication of the region marked by the box is shown in Fig. 4. Here we notice 
the richness and the complicated behavior of the motion in the vicinity 
of the hyperbolic fixed point. There exist a series of high-order fixed 
points, both elliptic and hyperbolic, with the nonlinear oscillator type of 
motion occuITing in the vicinity of elliptic points. Thus, as is apparent, 
the phase-space picture is self-similar with the phase-space structure of 
Fig. 3 being repeated on a h e r  scale. The nearly uniformly dense region 
surrounding the hyperbolic fixed point at I = 0 and 6 = 0 and emending 
along the separatrix of the first order fixed point (seen in Fig. 3) is due 
to a single particle. The usual phase-space ton are completely destroyed 
in this region and the motion in the vicinity of the hyperbolic k e d  point 
is very complex. This motion is referred to as “~tochastic” or “chaotic” 
motion and we shall discuss detailed properties of this type of motion 
later. Figs. 3 and 4 show regions of local stochasticity where no periodic 
motion is discernable and the motion of the particle is no longer restricted 
to the surface of a torus. 

In section I, it was shown that there emanate stable and unstable 
manifolds from a hyperbolic fixed point. While these manifolds over- 
lapped for the nonlinear oscillator, small perturbations tend to separate 
out these manifolds. A manifold cannot intersect itself, otherwise the 
solutions to the equations of motion would not be unique for a given 
set of initial conditions. However, the stable and unstable manifolds can 
intersect each other. This intersection point in phase space is known as 
a “homoclinic” point. (The intersection point of a stable manifold from 
one hyperbolic fixed point with an unstable manifold from a Merent 
hyperbolic fixed point is known as a “heteroclinic” point.) A homoclinic 
point is not a fixed point of the motion, and if there exists at least one 
homoclinic point, then there must be an infinite number of them. The 
density of homoclinic points increases as one approaches the hyperbolic 
fixed point. This, along with the requirement that Hamiltonian systems 
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Fi,.;ure 3. Surfaceof-section for K = 0.5 showing the eks- 
tance of higher order islands. 

0 - 0.025 
27r 

Fi,.;ure 4. A magTllfied view of the rectangular region marked 
in Fig. 3 near the hyperbolic k e d  point at 8 = 0, I = 0. 
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satisfy Liouville‘s theorem, leads to the extremely complicated behavior 
in the vicinity of hyperbolic k e d  points and along the separatrix. Details 
of this complexity are beyond the scope of this article. Interested readers 
are referred to [l, 21 and references therein. Fig. 4 gives evidence of the 
complicated interaction not only between stable and unstable manifolds 
of the hyperbolic fixed point at ( I  = 0, 0 = 0) but also between different 
hyperbolic fixed points generated through the breakup of rational ton. 

Upon comparing Fig. 2 with Fig. 3 we notice that, as the amplitude 
of the perturbation is increased, more K4M ton are destroyed with the 
concurrent appearance of more fixed points. KAM surfaces form barriers 
in phase space which do not allow, for example, intersection of stable 
and unstable manifolds from hyperbolic points on different sides of the 
KAM surface. Thus, particle orbits, which can wander in phase along 
these manifolds (as seen in Fig. d), are prohibited from crossing those 
parts of phase space where KAM ton exist. In other words, the exlstence 
of K,4M ton stops the phase-space motion or” certain particles from be- 
coming globally stochastic where these particles have access to the entire 
range of action. One is inevitably led to ask the question: at what am- 
plitude is the last KAM surface destroyed? A simple way to answer this 
question is as follows. Each rational torus I = 2nn (n = 0.21,&2,. . .) 
corresponds to a paticle velocity being equal to the phase velocity of the 
n-th plane wave in Eq. (6b), ie. the particle is in resonance with the 
n-th plane wave. These ton are also cded  resonant ton. The trapping 
width, as discussed above, associated with the resonant ton is approx- 
imately given by (41)yT = 2 d ?  where each resonant torus is treated 
independently of other resonant ton (2.e. each plane wave is treated in- 
dependently of other plane waves). Consider two such neighboring ton 1 
and I + 1. If the s u m  of the trapping width of each of these ton is equal to 
the separation between the ton, 2.e. the trapping widths of neighboring 
resonant ton overlap, then it is intuitively clear that there cannot exist 
any KAM surface between these ton. This criterion can be expressed 
as: (AI):,  + ( A I ) ~ ~ l ~ ( A I ) l , l + l  where (AI)l,l+l is the separation in ac- 
tion between two neighboring resonant ton. This is known as the simple 
Chirikov resonance overlap criterion. For the standard map this condi- 
tion gives K?,x2/4.  This condition is modified significantly due to the 
presence of secondary resonances (corresponding to rational ton besides 
those at I = 2nn) as seen in Fig. 2. Detailed numerical calculations show 
that the last KAM surface is destroyed for K x 0.9716 [12]. Thus, the 
simple resonance overlap criterion is too pessimistic. Once the last K-4M 
surface is destroyed we have a transition fkom local to global stochastic- 
icy. The portrait of the standard map at I( = 1 in Fig. 5 shows a very 
rich phase-space structure. Notice that remnants of the resonant ton 
at I = 0, k 2 ~ / 3 .  17; still remain. Thus, the motion of many particles 
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remains coherent for values of IC just exceeding the one that destroys 
the last KXM surface. The majority or" inicial conditions do not Iead to 
chaotic dynamics until A' is closer to: or greater than, the values of the 
Chrikov condition. 

0 

" 0 x e 2x 

Figure 5 .  Surface-of-section for K = 1. This h' is slight- 
ly greater than the critical Kc = 0.9716, for which the last 
KAM surface is destroyed. 

V. PROPERTIES OF CHAOTIC MOTION 

There are distinct differences between coherent and chaotic motion 
besides those that appear in the surface-of-section plots discussed above. 
For motion occurring in three phasespace dimensions (e, I ,  and 7, be- 
ing the phase-space variables for the standard map), a Poincar6 surface- 
of-section is twdimensional so that the entire dynamics can be visu- 
alized easily. However, in cases when the phase-space dimensions are 
greater than three, a Poincar6 surface-of-section does not d o w  for sim- 
ple visualization so that regions of chaotic and coherent motion may not 
be easily discernable. In this section, using the standard map as an 
example, we will discuss some of the distinguishing features between co- 
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herent and chaotic motion that are applicable to dynamical systems with 
phasespace dimensions greater than three. 

Fi,o;ure 6. Surface-of-section for K = 1.5. 

A. Evolution of Particle Orbits 

Figure 6 shows regions of coherent and chaotic motion in the sur“ lace- 
of-section plot for the standard map when A’ = 1.5. The coherent part 
of the phase space is dominated by the island surrounding the first order 
elliptic fixed point discussed earlier. Consider a set of initial conditions, 
given by the circle in Fig. 7a, located inside this island for K = 1.5. 
After 100 iterates of the standard map this circle is mapped into the 
curve shown in the same figure. A magn&ed view of the tip, given in 
Fig. 7b, clearly shows that the curve obtained after 100 iterates is a 
closed curve. The area enclosed by this m e  is the same as the area of 
the circle. This is a consequence of Liouville’s theorem. Next consider 
a set of initial conditions, given by the circle in Fig. 8a and having the 
same area as the circle in Fig. 7a, located in the chaotic part of the phase 
space of Fig. 6. The mapping of this curve after four iterates of the map 
and after seven iterates of the map is shown in the same fi,p.re. 
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n = 100 

Figure 7a. Phasespace portrait of a sec of particles. in the 
coherent part of phase space, as n = 0 and at n = 100 for 
K = 1.5. 
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Figure 8a. Phase-space portrait of a set of panicles, in the 
chaotic part of phase space, at n = 0, n = 4: and n = I .  
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Figure 8b. A magnified view of the box shown in Fig. 8a. 
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Clearly, the initial circle is mapping into a complicated c w e  &eL 7 seven 
iterates. This curve is thinner and longer chan the circle and, as expect- 
ed, endoses an area which is the sitme as the area of the circle. The 
complicated feature of this curve is exemplified in Fig. 8b where a mag- 
niiied view of a part of the curve shows multiple sheets associated with 
the curve. These sheets are generated by a stretching and folding over 
of the original circle of initial conditions. After 100 iterates of the map, 
the initial circle of initial conditions maps into the picture shown in Fig. 
8c. Clearly, considerable stretching and folding has taken place in or- 
der to produce the observed surface-of-section. The initial conditions are 
now spread out over the chaotic region of Fig. 6. The large scale regions 
which are empty correspond to coherent motion. A comparison of Fig. 
8c with Fig. 7a shows a dramatic difference in the evolution of particle 
trajectories between the coherent and the chaotic regions. 

F i p r e  8c. Phase-space portrait at n = 100 for the set of 
particles shown in Fig. 8a. 

B. Separation of Orbits of Initially Nearby Particles 

Consider two particles which are initially separated in action by 1.0 x 
lov8 and have the same 8. If both of these particles are located in the 
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Figure 9. The magnitude of the difference in action of two 
particles versus n ( K  = 1.5), located in the coherent pan of 
phase space. 
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Figure 10. Same as Fig. 9, except that the particles are ini- 
tially located in the chaotic part of phase space. 
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coherent part of phase space (i. e. lying initially within the circle of Fig. 
?a), the separation in action between these particles as function of the 
number of iterates of the map is as shown in Fig. 9 for IC = 1.3. The 
actions of the two particles remain close to each other over an extended 
period of time. However, if the two particles are located in the chaotic 
part of phase space (ie. lying initially within the circle of Fig. Sa), then 
the difference in the actions of the particles increases exponentially with 
time for early times. This is shown in Fig. 10 for two values of IC. The 
separation is faster for larger amplitudes of the waves and the separation 
in action saturates at earlier times a s  the amplitude is increased. The 
e.uponential increase in the separation of initially nearby orbits in phase 
space indicates dynamics with sensitive dependence on initial conditions; 
this is the essential feature which leads to loss of information in chaotic 
systems. Small errors in measurements at some initial time will grow 
e-uponentidy with time leading to unpredictability. 

C. Frequency Spectrum of Particle Orbits 

orbit of a particle in phase space can be decomposed into a fre- 
quency spectran leading to additional information about the dynamics. 
In particular: periodic, quasiperiodic, and chaotic properties of the or- 
bit can be dezermined from the spectrum analysis. In order to illustrate 
the connection between a particle’s orbit and its frequency specnun we 
Fourier analyze the action of a particle obtained from the standard map. 

Fig. l l a  is the surface-of-section for a single pasticle started in the 
coherent part of phase space for K = 1.3. The particle’s orbit initially 
started off on one island returns to that island after every six iterates 
of the standard map. The sixth-order islands shown in Fig. l l a  are 
easily discernable in Fig. 6 where they surround the primary island. The 
discrete set of actions generated by Eq. (lob), leading to Fig. lla, are 
Fourier analyzed to give the frequency spectnun, I(v) as a function of the 
frequency v ,  shown in Fig. l lb .  Since the mapping equations generate 
a value for the action after one (normalized) unit of time, the frequency 
spectrum is bound to lie in the interval [-0.5,0.5]. However, the spectrum 
is symmetric around v = 0 so we only show the spectrum in the interval 
[0,0.5]. There are two primary frequencies which determine the frequency 
spectrum of orbit. The &st frequency corresponds to the particle jumping 
from island to island in the surface-of-section and the other frequency 
corresponds to the motion of the particle in any given island. The former 
frequency is obviously 1/6 and dominates the spectrum in Fig. l lb .  The 
latter frequency has its main peak near v = 0.2. The rest of the spectrum 
is essentially composed of harmonics and sums and differences of these 
frequencies. The motion of the particle is clearly periodic. 
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Figure lla. Surface-of-section for a single particle (K = 1.3). 

Fi,p.re l l b .  Frequency spectrum of the orbit in Fig. Ila. 
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Fi,gure Ea. Surface-of-section for a single particle (A’ = 1.5) 
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Figure 12b. Frequency spectrum of the orbit in Fig. 12a. 
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Figure 13a. Surface-of-section for a single particle ( K  = 1.5). 
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Fi,we 13b. Frequency spectrum of the orbit in Fig. 13a. 
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Fi,gu.re 14a. Surface-of-section for a single particle (K = 4.5). 
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Figure 14b. Frequency spectrum of the orbit in Fig. 14a. 
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Fig. 12a shows the orbit of a particle started near the separatrix or” 
the sixth-order islands of Fig. 6 for A’ = 1 3. The corresponding frequency 
spectrum, apart from the dominating peak at v = 1/6 corresponding to 
the sixth-order island, is a broadband spectrum and shown in Fig. 12b. 
The spectrum corresponding to the motion of the particle around any 
given island is broadband, composed of many peaks, and centered around 
v = 0. The jumping of the particle from island to island in the surface-of- 
section shifts the spectrum to lie near v = 1/6, maintaining the features 
of being broadband and composed of many peaks. 

Fig. 13a shows the surface-of-section for the orbit of a single particle, 
for K = 1.5, which is initially located in the chaotic part of phase space. 
It is worth noting that this picture is essentially the sitme as generated in 
Fig. 8c. One aspect which is intuitively clear from Fig. 13a but difiicult 
to prove is that the motion of a single particle in chaotic phase space 
will eventually come arbitrarily close to any given point in the connected 
chaotic phase space. This property fonns a basis for the ergodic hypothesis 
[2]. The frequency spectrum for this particle, Fig. 13b, is broadband 
covering the entire frequency range. The peak at v = 1/6 is a consequence 
of the fact that the particle, during its travels in the chaotic phase space, 
spends a lot of time near the sixth-order chain of islands discussed above. 
This is obvious in Fig. 13a where the darker part of phase space is near 
the sixth-order islands. 

Figs. 14a and 14b show the surface-of-section for a single particle in 
chaotic phase space and the corresponding frequency spectrum, respec- 
tively, for K = 4.5. The spectrum is more uniformly broadband than in 
Fig. 13b. Fig. 14a shows that the fixed point at I = 0, 6 = 7i which was 
elliptic for h‘ = 1.5 (Fig. 6) has now become hgerbolic. This transition 
in the character of a fked point has been discussed earlier. A comparison 
of Figs. 13a and 14a, and of Figs. 13b and 14b, shows that as the am- 
plitude K is increased a larger part of phase space becomes chaotic and 
the frequency spectrum becomes more uniformly broadband, ie. more 
“noiselike. ’’ 

In s u m m a r y ,  we have shown in this section that, initially, nearby 
particles in phase space will diverge exponentially if these particles are 
located in the chaotic phase space. Also, the frequency spectrum of an 
orbit of a particle located in chaotic phase space will be broadband. The 
trajectory of a single particle will wander through the entire connected 
region of chaos. 

VI. EFFECT OF -4N ELECTROSTATIC W-4VE 
ON -4 CHARGED P.4RTICLE IN A MAGFETIC FIELD 

In space plasmas and laboratory plasmas, static magnetic fields play 
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an important role in determining the dynamics of charged particles. Elec- 
trostatic waves. which either exist in the plasma or are externally im- 
posed, can interact with the charged particles and signdicantly modifi 
their trajectories. .4n example of such electrostatic waves is lower hy- 
brid waves whose frequencies typically lie in the range of the ion-plasma 
frequency or below. In auroral plasmas, lower hybrid waves are generat- 
ed by energetic electrons which are injected into the suprauroral regon 
from the plasma sheet. It has been shown that these lower hybrid waves. 
propagating across the magnetic field, interact with ions (H+ and O+) 
of ionospheric origin and accelerate them upwards along the magnetic 
field lines [13]. In laboratory plasmas, lower hybrid waves are excited by 
means of waveguide b.r;lls at the edge of the plasma. The interaction of 
lower hybrid waves with ions has been of considerable interest and has 
been extensively studied [1&18]. Below we describe some of the interest- 
ing features of the motion of an ion in the presence of lower-hybrid type 
of waves. 

Consider the mocion of an ion in a constant magnetic field, being 
acted upon by an electrostatic wave propagating across the magnetic 
field. The Hamiltonian for the motion of the ion is: 

v 2  02x' QE, 
2 2 144 k H ( z , v ; t )  = - + - + - cos(kz - U O t )  (11) 

where the magnetic field is assumed to be along the 2-direction. the elec- 
trostatic wave is propagating along the %direction, x and v are the posi- 
tion and velocity (along ?), respectively, of an ion of mass M and charge 
Q, Eo is the electrostatic field amplitude with w and k being the frequen- 
cy and wave vector (along i?), respectively? and s1 = QB,/M is the ion 
cyclotron frequency in a magnetic field of strength Bo. Upon normalizing 
w t  + r, kx --t q, kv/w -+ p :  S2/w ---+ wo, the above Hamiltonian can be 
transformed to: 

+ €cos(q - 7) 
PL W ; q L  

H(47P;  7) = 2 + - 2 

where E = QEok/(iMw2). The unperturbed Hamiltonian describes the 
motion of a simple pendulum. A canonical transformation to the action- 
angle ( I  - 6) variables of the simple pendulum: 
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yields the Hamiltonian: 

H ( 8 ,  I ;  7) = wOI +  cos (,/$ sin8 - ;> 
= W 0 I + €  5 J, (m wO c o s ( n 8 - ~ )  (14) 

n=-m 

where J, is the Bessel's function of the n-th order. The unperturbed 
Hamiltonian, as expected, is just a function or" the action, and the action 
as dehed  in Eq. (13) is a positive quantity. The Hamiltonian is periodic 
in 7 with period 2n. A surface-of section plot is obtained by numerically 
integrating the equations of motion corresponding to the above Hamil- 
tonian and plotting the action-angle coordinates of the orbit after every 
27r interval in T .  There are two distinct cases which are of interest and 
will be discussed below: the on-resonance case when l /wo  = integer (ie. 
the wave frequency is a harmonic of the cyclotron frequency), and the 
off-resonance case when l / w o  is close to a n  integer. 

For the case of l /wo = 5 ,  corresponding to an  on-resonance case, and 
E = a plot of the sdace-of-section is shown in Fig. 13a. The hy- 
perbolic and the elliptic fixed points can be easily identified in the fi,aure 
and it is interesting to note that neighboring islands: vertically or hor- 
izontally, have a common separatrix. Furthermore, all the separatrices 
are connected in such a way that a particle started on any given sepa- 
ratrix can, in principle, move to arbitrary values of the action along the 
separatrices. This phase-space picture does not change in its essential 
characteristics for any amplitude E < however infinitesimally small 
the amplitude becomes, provided E > 0. Thus, unlike the standard map 
where the trapping width corresponding to the primary island (island of 
order 1) increased in size as the square-root of the amplitude for small 
amplitudes of the perturbation, the trapping width corresponding to the 
primary islands remains essentially independent of amplitude for small 
amplitudes. There are no KAM surfaces separating the primary islands. 
The Chirikov resonance overlap criterion would not seem to apply since 
the neighboring islands overlap, sharing a common separatrix, for arbi- 
trarily small amplitudes. The phasespace plot in Fig. 15a can be easily 
understood. 

Consider a canonical transformation of the Hamiltonian in Eq. (14) 
to a new set of canonical Msiables ( 2 0 ,  J )  which are defined as: + = 
m8 - T ,  J = I / m ,  where m is an integer. The transformed Hamiltonian 
is : 
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t E 5 J, ({F) COS { :$ + (y) T} 

72 = -m 

n f m  

In the on-resonance case, there exists an integer m such that muo = 1. 
Since the tenns under the summation sign depend explicitly on time the 
average effect on the motion of the particle can be ignored for small am- 
plitudes. The leading order Hamiltonian in this case is just I?,($, J ;  r) = 
EJ, cos(+), and the corresponding equations of motion are: 

(16b) 

where the prime denotes a dericxtive with respect to the ar,pnent. There 
are two sets or" fixed points of Eqs. (16a) and (16b), given by (~,,,  J,,) and 
(de, J, ) , which satisfy, respectively, the following equations: 

cos($,,) = 0 and J, ( m a )  = 0 

sin($,) = 0 and JL ( m a )  = 0 

(17a) 

(17b) 

It is easy to show that the first set of conditions, Eq. (17a), corresponds to 
hyperbolic k e d  points while the second set of conditions, Eq. (17b), cor- 
responds to elliptic fixed points. Let us define j m , ,  and jL,, (s = 1,2, . . .) 
to be such that Jm(jmls) = 0. and Jk(j' m,3 ) = 0, respectively. Then, for 
a given s,  hyperbolic fixed points are located at Jh,s = j: ,s/(2m2) and 
+h,s  = (21 + 1 ) ~ / 2  ( I  = 0,1,2,. . .), and elliptic points a.re located at 

= ZT ( I  = 0,1,2,. . .). Since a surface-of- 
section for an orbit is obtamed by determining the action-angle coordi- 
nates of a particle every 2x steps in T ,  and since the angle coordinate 
6 is periodic with period 27r, then, from the transformation equations 
relating ($, J) to ( @ , I ) ,  the hyperbolic and elliptic points will be locat- 
ed at I,, , = j&/(2m), O h , ,  = (21 + 1)7r/(2m): and I,,, = j;,s/(2m), 
8 = Zi~/m, for s = 1,2:. . . and I = 0,1,. . . , 2m - 1. Thus, for any given 
s there will be 2m hyperbolic and 2m elliptic fixed points. 

.'2 /(2m2) and $, 
J e , s  = J m , s  1: 

e,, 
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Figure 13a. Sadace-of-section for wo = 1/5 and E = lo-'. 
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Figure 1Sb. Surface-of-section for wo = 1/5 and E = 5 x 10-2. 
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For m = 3 the first couple of zeros of the Bessel’s function and its 
derivative are [19]: j5,1 % 8.77. j5 ,2  M 12.34, j k , l  ==: 6.42 andjk,2 z 10.52. 
Then the hyperbolic points are at Ih z 7.69 and Ih,, M 15.22. For each 
of these actions the hyperbolic point; are at 6 = 7/10, 3n/10,3n/107 . . . , 
19n/10. The elliptic points are at Ie 9 z 4.12 and Ie 7- M 13.23. For each 
of these actions the elliptic points are at 6 = 0, 7/5, % / 5 ,  . . ., 9.n/5. 
These locations of the fixed points are in good agreement with those in 
Fig. 15a that are determined by numerically integrating the complete 
equations of motion. 

The simple analysis given above breaks down as the amplitude of 
the perturbation is increased since the terms under the summation sign 
in Eq. (15) cannot be ignored. For l /wo  = 5 and E = 5 x the 
surface-of-section plot is shown in Fig. 15b. From this figure it is appar- 
ent that a chaotic layer in phase space develops around the separatrices. 
This chaotic layer grows in thickness as the amplitude of the perturba- 
tion is increased. Also, for a &xed amplitude, the thickness increases 
with decreasing action. This is known as web stochasticicy and has been 
discussed in the literature [20]. -4s the amplitude is increased the con- 
nected region of chaos expands. However, unlike the standard map which 
is periodic in action, the c5aotic phase space is always bounded in ac- 
tion for any finite amplitude. This is apparent from Fig. 15b where we 
note that the regions of large action are not chaotic while the regions of 
smaller action are chaotic. 

In the off-resonance case the wave frequency is not a harmonic of the 
cyclotron frequency. Let us consider the slightly off-resonance case when 
uo = (1 - 6,)/m where m is an integer and 16,1 << 1. Using arguments 
similar to those for the on-resonance case, the leading order Hamiltonian 
for small amplitudes is: 

( m m )  cos(+) 
- 
Ho(+, J ; T )  = -6,J + E J, 

where in the argument of the Bessel’s function we have made use of the 
assumption that IS,I << 1. The corresponding equations of motion are: . 

For E = 0, the leading order Hamiltonian in E.9. (18) is not zero, and from 
Eq. (19b) J is a constant of the motion. Thus, the surface-of-section will 
be made up of lines of constant I .  Furthermore, for E = 0, there are no 
fixed points for Eqs. (19a) and (19b). There is a threshold value of E for 
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which there will exist fixed points of these equations. The conditions for 
the existence of fixed points ( g h  J h )  and (20, , J e )  is: 

where I = 0, I, 2,.  . .. It can be easily shown that, if the above conditions 
are satided, Eq. (20a) will give the hyperbolic fixed points and Eq. (20b) 
will give the elliptic fixed points. From Eq. (20a) the condition for the 
exlstence of a hyperbolic fixed point is: 

where ch = n z f i  satisfies J(Ch) = 0. From Eq. (20b) the condition for 
the existence of elliptic fixed points at a given e, = m a  is that: 

(22) 
E ' (-1)' 6m Ce 

m2 J:, (Ce * 

Since the local m h a  of IJ'(()I occur for those where J(() = 0, Eqs. 
(21) and (22) give the same condition for the threshold amplitude for 
the existence of hyperbolic and elliptic fixed points. One can easily show 
from the above expressions that the threshold amplitude increases for 
increasing action I and decreases for increasing harmonic number m. 

As an example of a slightly off-resonance case we choose wo = 1/5.05, 
rn = 5 :  so that 6, M 0.0099. From the conditions in Eqs. (21) and 
(22) we find that the threshold amplitude for the existence of elliptic 
(corresponding to I being an even integer) and hyperbolic fixed points 
is eth ==: 0.0134. Elliptic fixed points (corresponding to 1 being an odd 
integer) have a threshold amplitude of ==: 0.0136. At this amplitude 
there appear another set of hyperbolic fixed points. This is borne out 
by numerical integration of the exact equations of motion. Figs. 16a 
and 16b show the surface-of-section plots,for E = which is just 
below the threshold amplitude for the appearance of fixed points, and 
E = 2.5 x respectively. It should be noted that the phasespace 
islands are not connected to each other as in the on-resonance case. As 
the amplitude is increased, fixed points appear at larger d u e s  of the 
action while there appear regions of chaos for lower values of the action. 
This is evident in Fig. 16c which gives the surface-of-section for E = 
5 x The appearance of chaos is similar in fashion to the on-resonance 
case discussed earlier. Chaos appears near the separatrix and this region 
widens in phase space as the amplitude is increased. The chaotic region 
is always bounded in action. 
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Figure 16b. Surface-of-section for wo = 1/5.05 and E = 2.5 x 
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VII. CONCLUSIONS - GLOBAL DESCRIPTIONS 

We have illustrated features of chaotic particle motion in prescribed 
coherent fields and conditions for the existence of such motion using mod- 
els which are paradigms of nonlinear waveparticle dynamics. When there 
is a region in phase space that is chaotic, an initial distribution of parti- 
cles: which is localized in action in the chaotic part of phase space, wil l  
spread out to cover the entire region of connected chaos in action. This 
was shown for the standard map, in Figs. 8a and 8c, where a localized 
circle of initial conditions evolved to f3l up the entire chaotic phase space. 
It was also shown that nearby orbits diverged exponentially, thereby mak- 
ing it di.fFicult/impossible to keep track of an orbit of a particle accurately 
in the chaotic phase space, thus rendering the interaction irreversible. 

Based upon the above, one may attempt to describe the statistical 
evolution of a distribution of particles when the dynamics is chaotic. If 
an initial distribution of particles is localized in action near small values 
of the action in chaotic phase space: they will, on the average, gain energy 
and/or momentum from the wave as they spread to cover higher d u e s  
of the actions in the chaotic phase space. Particles which stick to K 4 M  
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surfaces will, on the average, not gain energy and/or momentum from 
the waves. In the chaotic phase space, the particle dynamics appears as 
if the particles are acted upon by random forces. In such circumstances 
one attempts to describe the evolution of a distribution function through 
the Fokker-Planck equation, where the chaotic dynamics is accounted for 
by a dif€usion coefficient. Although this is very useful as a global descrip- 
tion, there are many uncertainties and limitations associated with such a 
description of Hamiltonian cham. In cases of physical interest, the chaot- 
ic phase space is bounded, as in Figs. 15b and 16c, and there axe regions 
of coherent motion imbedded in regions of chaotic phase space. Also, in 
chaotic phase space there persist long-time correlations, i.e. the orbits of 
particles do not become randomized or ergodic on a short time scale (e.g. 
if the standard map represented Brownian motion, then the correlation 
time would be one iterate of the map - this is clearly not the case since, 
based on the computational results in Figs. 8a and 10, correlations exist 
over many iterates of the map). These issues complicate the derivation of 
the Fokker-Plan& desdption and the associated evaluation of the difi- 
sion coescient. Some aspects of these issues remain unresolved. A study 
or‘ the Fokker-Plarnck description and the diffusion coefficienr; is beyond 
the scope of this tutorial. However, the reader is referred to [2:  211 for 
details and further discussion. Finally, we want point out that in some 
chaotic dynamics of wave-particle interactions one encounters ”chmtic 
strea,ming” [22: 231 for which a Fokker-Planck description is inadequate 
(24, 251. 
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APPENDIX -4: P-4RTICLE MOTION IN A PLANE WAVE 

Consider a particle which at time t = 0 has q = q, and p = p , .  Since 
H ( q , , p , )  = p 3 2  + acos(qo) Ho is a constant of the motion, i.e. the 
particle‘s q and p at some time t are such that p 2 / 2  + Q cos(q) = H,, 
using Eq. (2a) we get: 
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The integral on the left-hand side can be evaluated analFically [26, 271 
for the case of trapped and passing particles. 

Trapped Particles 

Since lHoi 5 CY for trapped particles, lql ,< co~-~(H,/cu). The maxi- 
mum value of Iq( corresponds to the turning point of the trapped particle. 
Without loss of generality, we can set qo = T .  Then the solution of Eq. 
(AI)  is: 

where K~ = (No + a ) / ( k ) ,  K ( d )  is the complete elliptic integral of the 
first kind, and sn is the sine amplitude Jacobian elliptic function [19]. 
(Note that the complete elliptic integal of the first kind will be referred 
to as K ( K ~ )  in order to distinguish it from the amplitude of the standard 
map.) From Eq. (X2) it readily follows that: 

q = 2cos-I [K sn ( ~ ( 6 ~ )  + &t I K * ) ]  (-42) 

where cn is the cosine amplizude Jacobian elliptic function [19] 

Passing Particles 

c 

For untrapped particles Ho > a and we assume that go = 0. Then, 
Eq. ( A l )  gives: 

where ,O = l / ~ .  Using Eq. (2a): 

where dn is the delta amplitude Jacobian elliptic function [19]. 

APPENDIX B: ACTION-ANGLE VARIABLES 
FOR THE NONLINEAR OSCILLATOR 

The action-angle variables can be obtained by solving the Hamilton- 
Jacobi equation [4. Here we give the results without going into details 

G35 



of the Hamilton-Jacobi theory. 
The action variable is defrned as: 

where the integral is over one orbit for a trapped particle: and from 0 
to 27r for the passing particle. The action is a constant of the motion 
(being a function of Ho only) and the Hamiltonian can be expressed as 
a function of I only. The angle coordinate is given by: 

where qo is the initial coordinate of the particle. As in Appendix .4 we 
treat passing and trapped particles separately. 

Trapped Particles 

The integral in Eq. (Bl) ,  tabulated in [27], is evaluated by appro- 
priately accounting for the turning points of the trapped particle. This 
gives: 

(B3) 
8 

I = -6 - [ ( K ~  - 1) K ( K ~ )  - E(2)j 
4 

where is the complete elliptic integral of the second kind [19]. The 
action is a function of the Hamiltonian only. This relationship can be 
inverted to express the Hamiltonian as a function of the action only. 
Thus, the action is a constant of the motion. 

Since all trapped particles pass through the point q = 7; the integral 
in Eq. (B2) for the angle is evaluated by setting go = x. -4gain, this 
integral is tabulated in [27] and we h d :  

where F is the elliptic integral of the first kind [19]: and Ksin(7) = 
cos(q/2). The frequency of oscillation, Qtr for the trapped particles is 
given by the time derivative of Eq. (B4). This is equivalent to taking the 
derilxtive of the Hamiltonian with respect to the action [4]. Thus: 

x dz dH0 - . d9 Q,, - = - - 
dt dI 2 K ( d )  

Passing Particles 
- 

The action is: 
4 

7; 
I = + Z K E ( ~ ~ )  
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where 3 is deiineti in Appendix -4. 

resulting integral is tabulaceti (see [27]) so that: 
The angle 0 is obtained from Eq. (B2) by setting Q = 0. The 

where sin(() = sin(q/2)/cos(77). The frequency of oscillation for the 
passing particles, where a single oscillation corresponds to going fkom 
4 = 0 to q = 27r, is: 

APPENDIX C: DEFUVATION OF THE STANDARD MAP 

Here we solve Eqs. (9a) and (9b) and derive the standard mapping 
equations. Let On-€ and In-€ be the angle and action of the particle, 
respectively, at time T~ = n - E (where E << 1). Thus: T~ is the time 
just before the particle receives its n-th kick. The action of the particle 
I ( T )  at a subsequent time T, where n < T < (n -+ 1) - E ,  is obtained by 
incegrating Eq. (9b): 

where 8, = 8(n) is the angle of the particle at time n. Then, from Eq. 
(9a), the angle of the particle at time t is: 

If Qn+l-e and ',+I-€ are the angle and action of the particle, respectively, 
at time T = (n + 1) - E ,  then, in the limit E - 0 Eqs. (Cl) and (C2) 
reduce to the mapping equations (7a) and (7b). 
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